
IP/SOC 2005 – December 7-8, 2005 1

Abstract :

In this paper we will describe a verification
environment developed for the emerging CE-ATA
interface. The environment is written in e and is
fully compatible with Cadence's Specman Elite. As
such, it can be used as a Plug-n-Play verification
component into any SoC that implements a CE-
ATA bus. The user has full control over every
verification aspect, including actively driving
generated stimuli onto the bus, or passively
monitoring the bus for protocol compliance
checking, and coverage collection.

1. Introduction

CE-ATA [1] [2], is an emerging disk drive interface
tailored to the needs of the handheld and Consumer
Electronics (CE) industries. It uses an optimized
subset of the ATA command set, stripped down to
its bare essentials, over the proven and established
MultiMedia Card (MMC [3]) electrical interface.

Creating a Verification Environment (VE) for CE-
ATA poses a number of challenges. A
comprehensive VE should be easily configurable to
fit the user environment, should allow full user
control to every aspect of its functionality, and
should provide monitoring, checking and coverage
collection capabilities at all protocol layers.
Additionally, since the CE-ATA interface is usually
part of a bigger System-on-Chip (SoC) design, a
plug-n-play ability to a bigger system-wide VE is
particularly important.

In this paper, we discuss these challenges and
present a CE-ATA VE that has been constructed
with the above goals in mind. It is written in e as a
reusable and highly configurable eVC (e
Verification Component [4]), is fully compatible
with Cadence's Specman Elite [4], and takes
advantage of the powerful eRM (e Reuse
Methodology [4]) guidelines.

2. CE-ATA Technology Overview

CE-ATA, publicly announced in September 2004 at
the Intel Developer Forum, is a disk drive interface
standard tailored to the needs of the handheld and
Consumer Electronics (CE) industries. It facilitates
the adoption of higher capacity digital storage,
afforded by small form factor hard disk drives, into
host systems such as cameras, MP3 players, PDAs,
personal video players, cellular handsets, GPS
navigation systems, automotive devices, and
various new and emerging applications. The CE-
ATA initiative is backed by some of the most
prominent companies in these market segments.

Based on the target market, CE-ATA's goals differ
from the ones of its desktop siblings, PATA and
SATA (Parallel and Serial ATA). Emphasis is
given on simplicity, ease of integration, power
efficiency and low pin-count, instead of plain
performance.

CE-ATA meets these goals by using an optimized
subset of the ATA command set, stripped down to
its bare essentials, over the proven and established
MultiMedia Card (MMC) electrical interface. Thus,
ATA commands are sent to the small form factor
HDD using the MMC bus protocol.

The ATA commands used by CE-ATA are:

• IDENTIFY_DEVICE
This command returns a 512-byte data
structure to the host that describes device-
specific information and capabilities. This
information includes the Serial number,
Firmware revision, Model number, CE-
ATA version compliance, Sector size, and
ATA signature.

• READ_DMA_EXT

This is the only available ATA command
to read data from the device. The
command parameters are: Sector Count

 IP/SOC 2005

Session : Industrial Design and Methodology

Designing a CE-ATA Verification Environment for SoC Applications

Ioannis Mavroidis, Globetech Solutions

Thessaloniki, Greece

IP/SOC 2005 – December 7-8, 2005 2

which identifies the number of 512-byte
units of data to be transferred, and LBA
which identifies the starting logical block
number for the transfer.

• WRITE_DMA_EXT

This is the only available ATA command
to write data to the device. The command
parameters are the same as the ones used
in READ_DMA_EXT.

• STANDBY_IMMEDIATE

This command forces the device into a
power save mode.

• FLUSH_CACHE_EXT

For devices that buffer/cache written data,
this command ensures buffer data is
written to the device media.

In ATA, a command is executed by first delivering
it to the device, and then by having both host and
device execute the command specific protocol.

Assuming no PACKET command support, all
commands and command parameters are delivered
by writing the device Command Block registers.
After writing the command parameters to the
corresponding device registers, the command is
launched by writing to the Command register. At
this point, both the host and the device enter a
command specific state machine to execute the
command protocol.

For the DMA transfers (assuming Multiword DMA
is used, instead of Ultra DMA) the ATA command
protocol consists of the device asserting a DMA
request signal when it is ready for the transfer,
waiting for the host to acknowledge the DMA
request and then transferring the requested data.
After the DMA transfer is acknowledged and
finished, the host polls the device Status register or
waits for a device interrupt (depending on whether
interrupts are enabled or not) until the device
becomes idle.

CE-ATA uses the above ATA command delivery
and protocol execution mechanisms over an MMC
bus and command protocol. The MMC bus
conforms to the handheld market requirements,
utilizing a low pin-count and low voltage levels. It
consists of 3 power supply pins and 10 data pins
(contrast this to the 50-pin ATA interface):

• CLK
All bus signals are synchronous to this
clock signal.

• CMD
This signal is bi-directional and is used for
the serial transfer of both the host
commands and the device responses. Both
commands and responses are preceded by
a start bit ('0') and succeeded by a 7-bit
CRC checksum followed by an end bit
('1'). All command parameters, such as
address, byte counts, etc., are transferred
on this signal as part of the command.

• DAT0-DAT7

These are bi-directional data lines used to
transfer data from the host to the device
and vice versa. Data is transferred in
blocks of configurable size (default is 512-
byte blocks), which are preceded by a start
bit ('0') and succeeded by a 16-bit CCITT
type of CRC checksum followed by an end
bit ('1') in each of the data lines. When
data is transferred to the device, line
DAT0 is also used for flow control; the
device will use this as a busy signal after
every data block transmission to indicate
when it is ready to accept the next data
block.

After a command is driven by the host on the CMD
line, the device will drive its response (if any) on
the CMD line, followed by the data block transfers
(if any) on the DAT0-7 lines.

CE-ATA maps all required ATA registers to the
MMC register space and uses a reduced MMC
command set to deliver the ATA commands of the
previous section to the device. It makes use of the
following MMC commands (CMD60 and CMD61
are new MMC commands defined by CE-ATA):

• GO_IDLE_STATE (CMD0)
Used for software resets.

• STOP_TRANSMISSION (CMD12)

Used for command abortion.

• FAST_IO (CMD39)
Used for single register access (8-bit). The
host will use this MMC command to
access a single (MMC-mapped) ATA
register, e.g. for polling during ATA
Command Protocol execution.

• RW_MULTIPLE_REGISTER (CMD60)

Used to access multiple registers with a
single MMC command. The host will use
this MMC command to deliver an ATA
command by writing all appropriate
(MMC-mapped) ATA registers.

IP/SOC 2005 – December 7-8, 2005 3

• RW_MULTIPLE_BLOCK (CMD61)

Used to transfer data. The host will use
this MMC command to transfer the data
during the ATA Command Protocol
execution.

CE-ATA also defines a command completion
signal for use as the interrupt mechanism during the
ATA Command Protocol execution (if interrupts
are enabled). Instead of adding an extra interrupt
line, the device interrupts the host by sending the
command completion signal over the CMD line.

Figure 1 shows how a READ_DMA_EXT
command would be executed over a MMC bus. The
host uses CMD60 to deliver the ATA command to
the device and then polls the Status register until
the device is ready to accept data (DRQ set). At this
point, the host uses CMD61 to initiate the data
transfer. When the data has been transferred, the
host again polls to determine the device status after
command execution (assuming interrupts are
disabled; if not, the device would use a command
completion signal to interrupt the host when the
command has finished).

3. Verification Goals and Challenges

Figure 2 shows the possible applications of a CE-
ATA Verification Environment (VE).

In order to verify a CE-ATA compliant device, the
VE should be able to emulate a CE-ATA compliant
host, and vice versa. In both cases, the VE should
monitor and check the CE-ATA interface for

protocol compliance. The protocol checker can also
be used in cases where both the host and device are
part of the DUT.

Figure 2: Applications of a CE-ATA Verification
Environment

a) Verifying a CE-ATA compliant device
b) Verifying a CE-ATA compliant host
c) Verifying a CE-ATA Interface

Creating such a VE poses a number of challenges.
These are summarized below:

• CE-ATA protocol complexity
CE-ATA combines several commands and
operation modes from both ATA and
MMC standards. A comprehensive VE
should provide the means to easily
stimulate, monitor and check the CE-ATA
bus for all these different modes.

• Flexibility in user control

DUT

CE-ATA
Compliant

Device

DUT

CE-ATA
Compliant

Host

CE-ATA

Compliant
Device

DUT

CE-ATA
Compliant

Host

CE-ATA

Compliant
Host

DUT

CE-ATA
Compliant

Device

Monitor
&

Protocol
Checker

(a) (b) (c)

CE-ATA
Verification

Environment

CMD-60

ATA reg
addr
WR

R1b

device
ready

ATA
regs

contents

CMD-39

Status
addr
RD

R4

reg
contents

CMD-61

byte
count
RD

R1

device
ready

Data
block

Data
block

CMD-39

Status
addr
RD

R4

reg
contents

CMD

DAT0-7

Host is driving the bus
lines

Device is driving the bus
lines

polling polling

Figure 1: READ_DMA_EXT execution over MMC bus.

IP/SOC 2005 – December 7-8, 2005 4

The verification engineer should be able to
fully control all aspects of the VE. These
range from controlling whether the DUT
consists of a host, a device, or both, to
specifying the protocol timing parameters,
and performing any optional error
injection (e.g. CRC errors or device
faults).

• Layered protocol checking

The CE-ATA bus monitor needs to
perform protocol compliance checking for
the device under test (DUT) at both MMC
and ATA layers. All aspects of operation
need to be verified, ranging from protocol
and timing violations, to transmission and
data integrity errors.

• Functional coverage analysis

The VE should be able to efficiently
collect and report coverage data from the
test-runs. Coverage analysis helps identify
holes in the verification plan, eliminating
which, will eventually lead to testplans
that fully exercise every aspect of the
DUT.

• Verification closure metrics

Part of a comprehensive reusable VE is to
define verification goals that can be blintly
applied by the verification engineer as part
of wider SoC verification goals. These
goals are described in terms of coverage
goals for specific items.

• Seamless integration into SoC VE

Since CE-ATA designs are usually part of
a bigger SoC, the verification engineer
should be able to seamlessly integrate the
CE-ATA VE into a bigger system-wide
SoC VE. This Plug-n-Play ability plays a
key role in the creation of reusable
Verification IP.

4. The CE-ATA e Verification
Component

A CE-ATA VE was constructed with the above
goals in mind. It is written in e as a reusable and
highly configurable eVC (e Verification
Component), and is fully compatible with
Cadence's Specman Elite. Taking advantage of the
powerful eRM (e Reuse Methodology) guidelines,
it can be put as is into a SoC-wide VE, to verify
CE-ATA compliant host or device
implementations.

Figure 3 shows the CE-ATA eVC architecture in its
two most typical applications, which are to verify a
CE-ATA compliant device or host. For this reason
the Agent of the CE-ATA eVC can play the role of
either a bus master (emulating a host that initiates
activity on the bus – see Figure 3), or the role of a
bus slave (emulating a device that responds to bus
master requests). In both configurations, an
independent Protocol Checker unit, verifies the CE-
ATA bus traffic against MMC or ATA layer errors.

Figure 3: Architecture of the CE-ATA
e Verification Component (eVC)

If both an ACTIVE HOST Agent and an ACTIVE
DEVICE Agent are instantiated, together with the
Protocol Checker, the eVC can operate in a
completely standalone mode, where no DUT is
present. If, on the other hand, the Protocol Checker
is the only unit instantiated, with no ACTIVE
HOST or DEVICE Agent present, the eVC can
operate in a completely passive mode monitoring a
CE-ATA bus.

The CE-ATA eVC consists of the following
components:

Bus Monitor

The Bus Monitor is a completely passive unit which
sits on the CE-ATA bus, and monitors for all types
of transactions including MMC Commands, MMC
Responses, MMC Data Blocks, CRC Status, MMC
Busy, Command Completion Signal, and Command
Completion Signal Disable. It collects the data for
each item in a temporary struct and, when it is fully
received, will emit a corresponding event. These
events will be acted upon by the HOST and

CE-ATA ACTIVE
HOST Agent
(bus master)

MMC-ATA
Sequence driver

BFM

CE-ATA ACTIVE
DEVICE Agent

(bus slave)

Device regs
Device RAM

BFM

CE-ATA
PROTOCOL
CHECKER

Device model &
Data Integrity

checker

MMC & ATA
protocol checker

Coverage
collector

BUS
MONITOR

DUT

CE-ATA
Compliant

Device

(a) (b)

DUT

CE-ATA
Compliant

Host

IP/SOC 2005 – December 7-8, 2005 5

DEVICE BFMs according to the CE-ATA protocol
rules, as well as the Protocol Checker.

ACTIVE HOST Agent

An ACTIVE HOST Agent, is able to fully emulate
the behavior of a CE-ATA compliant host. The host
acts as a bus master and generates commands on
the CE-ATA bus. The user is able to fully control
any aspect of the host behavior, ranging from the
sequence of generated MMC and ATA commands,
to the protocol timing the host should adhere to, and
to any optional CRC error injection. User control is
also provided at the ATA command level, where
the user is able to specify specific transmission
parameters for each command. The ACTIVE
HOST Agent contains an MMC-ATA Sequence
driver and a BFM. The user test interfaces with the
Sequence driver in order to specify the sequence of
commands to be executed over the bus. The BFM
(Bus Functional Model) executes the host protocol
to drive the bus with the specified commands.

ACTIVE DEVICE Agent

An ACTIVE DEVICE Agent, is able to fully
emulate the behavior of a CE-ATA compliant
device. The device acts as a bus slave and can only
respond to host commands; it is not able to initiate
any transactions. The user is able to fully control
any aspect of the device behavior, ranging from the
protocol timing the device should adhere to, to any
optional CRC error and device fault injection. User
control is also provided at the ATA command level,
where the user is able to specify specific device
reaction to each command. The ACTIVE DEVICE
Agent contains models for the device registers and
RAM array, as well as a BFM to execute the device
protocol and drive the bus.

Protocol Checker

The role of the Protocol Checker is to decode the
transactions seen on the CE-ATA bus, report any
violations of the CE-ATA protocol, and gather
coverage information. For this reason it models
both a CE-ATA compliant host, and a CE-ATA
compliant device together with its registers and
storage area, thus knowing their expected states at
any point during the test.

The Protocol Checker is a completely passive unit,
independent of the Agents, which listens for any
type of event emitted by the Bus Monitor.
Whenever an event is emitted, it will be dispatched
to the corresponding event handler, that will:

1. Gather coverage data for this event.
2. Check whether received event was

expected at this point in the test.

3. Verify that the event adheres to all relevant
timing parameters.

4. Translate it to a specific step in the CE-
ATA protocol execution.

Protocol checking is performed at the following
layers. The user is able to turn each layer on or off.

• Command Parameter checking
This layer will report any MMC or ATA
command parameter errors, including out
of bounds or misaligned addresses, and
illegal byte counts.

• MMC Rules checking

This layer checks that all MMC
Commands are correctly executed. Take
for example a RW_MULTIPLE_BLOCK
(CMD61) command that writes multiple
blocks: this layer will verify that the MMC
Command is followed by an MMC R1b
Response, followed by the correct number
of MMC Data Blocks, each followed by
the correct type of CRC Status, and, if
interrupts are enabled, followed by a
Command Completion Signal.

• MMC CRC errors checking

This layer will report all CRC errors seen
on the bus, in any MMC command,
response, or data block.

• MMC Timing checking

This layer checks that the timing of all
MMC transactions is observed, as defined
by the N

ID
, N

CR
, N

ACIO
, N

WR
, N

CCS
, N

RC

and N
CC

 timing parameters.

• Data Integrity checking
This layer verifies Data Integrity of the
device data seen on the bus, against the
data in the device storage area model of
the Protocol Checker. If a memory address
was previously written with some data, the
Data Integrity checking will verify that the
device returns the correct data to any
subsequent host reads from this memory
address.

• ATA Rules checking

This is the highest layer of checking and
will verify that the host observes the CE-
ATA protocol rules for the execution of
each ATA command. For example,
assuming that a Data-In command with
interrupts disabled is issued, it will make
sure that the host will poll the device using
a FAST_IO (CMD39) command until
BSY is 0, before issuing each

IP/SOC 2005 – December 7-8, 2005 6

RW_MULTIPLE_BLOCK (CMD61)
command.

Coverage Collector

The Coverage Collector makes use of Specman's
Elite powerful tools for functional coverage
analysis, to collect coverage information on the
MMC and ATA commands, in all their different
flavors, that have been exercised over the CE-ATA
Bus during a set of test-runs. For example, it
collects coverage information for the opcode,
interrupts mode (enabled/disabled), number of
CMD61’s used, and MMC data block size, for all
ATA commands that get executed. It also collects
coverage information for the opcodes and
arguments of all monitored MMC commands and
responses, as well as the observed values for all
protocol timing parameters.

Conclusions

CE-ATA is an emerging disk drive interface
tailored to the needs of the handheld and Consumer
Electronics (CE) industries. In this paper we
discussed the challenges of creating a Verification
Environment for the CE-ATA interface, and
described an implementation that addresses these
challenges in an efficient and comprehensive way.

References

[1] CE-ATA Digital Protocol, Revision 1.1, 29-

September-2005. Available from
http://www.ce-ata.org

[2] CE-ATA Host Design Guide, Revision 1.0,

29-September-2005. Available from
http://www.ce-ata.org

[3] The MultiMedia Card System Specification,

Version 4.1, April 2005. Available from
http://www.mmca.org

[4] Cadence products: Specman Elite, eRM (e

Reuse Methodology), eVC (e Verification
Component).
http://www.verisity.com/products

