
Copyright © 2005 - Globetech Solutions

Page 1 of 8

Coverage Driven Verification of IEEE P1500-compliant

Embedded Core Test Infrastructures

Thanasis Oikonomou
poisson@globetechsolutions.com

Iraklis Diamantidis
iraklis@globetechsolutions.com

Stylianos Diamantidis
stelix@globetechsolutions.com

Abstract

Core-based design and reuse have been the key elements
of efficient System-On-Chip (SoC) development. Testing of
the embedded cores, however, introduces important
challenges, such as core test reuse and interoperability at the
SoC level, as well as the need for defining a common test
infrastructure among cores from different suppliers. The
IEEE 1500 Proposal for a Standard for Embedded Core
Testing addresses these issues by proposing a flexible
hardware test wrapper architecture for embedded cores
together with a Core Test Language. In this paper we justify
the need to thoroughly verify the functionality of the complete
testing hardware infrastructure in P1500-compliant SoCs.
We present a coverage-driven verification approach based
on an eVC architecture, which can be part of the overall SoC
level validation strategy, being equally flexible and
extensible to the IEEE P1500’s proposed hardware
infrastructure.

1. Introduction
Design reuse has been the key element to designing

increasingly complex Systems-On-Chip. The model of PCB
development in which pre-manufactured ICs are reused has
been transferred to the chip level. The designers create
libraries of predesigned and preverified building blocks, or
embedded cores, which make it easier to reuse complete
functionality to new Systems-On-Chip.

However, while an IC provider delivers manufactured
and tested components to be used in a PCB, embedded core
providers deliver components in a range of hardware
description levels. It is the SoC integrator’s responsibility to
put together all the embedded cores and test the
manufactured SoC. With the embedded cores typically
coming from different suppliers it has become a necessity to
provide a standard test infrastructure to address the issues of
test reuse and interoperability at the SoC level.

The IEEE 1500 Proposal for Standard for Embedded
Core Testing proposes a flexible test infrastructure
comprising of a hardware wrapper architecture and a Core
Test Language [1-3]. With the imminent release of IEEE
1500 standard, industry support is growing significantly.
EDA tools capable of generating IEEE P1500 core wrappers
have emerged in addition to the ATE/Tester extensions to

support the standard. Both sides exploit the CTL modeling
information of the embedded cores. Also, several significant
IP providers have announced IEEE P1500 compliance in
both existing and future design blocks.

Related publications have presented work done on SoCs
built with IEEE P1500 testability features [4, 5]. Extensions
to the mandatory IEEE P1500 register set in order to support
already working testability hardware, e.g. BIST is covered in
[6]. IEEE P1500 has borrowed many features from its IC
counterpart standard, IEEE 1149.1 JTAG [7]. The authors of
[8] describe an approach of verifying JTAG logic using a
combination of simulation of black-box checks and tracing.

We recognize the need for taking a comprehensive
approach to thoroughly verify the functionality of IEEE
P1500 wrappers and wrapped cores in a SoC environment.
The need originates from the fact that an IEEE P1500
wrapper is itself a hardware design, which can be created in-
house or sourced externally, designed by engineer or
generated by tool. In any case a P1500-compliant design is
subject to a range of possible errors so complete and
methodical verification of the IEEE P1500 test logic is
needed.

It is of great importance to understand the challenges
arising from the IEEE P1500 standard and create a
verification environment that faces them efficiently. First of
all, P1500-compliant core providers need to ensure that their
deliverable, most likely soft IP, complies to the standard and
is functionally sound. On the other hand, SoC integrators
dealing with P1500-compliant embedded cores need to
validate wrapper functionality both at the standalone and
SoC levels. Moreover, correct wrapper functionality needs to
be ensured upon synthesis of the design, now at the gate level.

The nature of the IEEE P1500 standard itself poses two
important challenges. Firstly, IEEE P1500 allows for a
plethora of cell behaviors and implementations resulting in
great flexibility. In addition, the standard leaves room for the
users to define their own wrapper instructions and registers
extending the standard’s mandatory set.

All the above can be summarized in a list of features that
the verification environment must offer to address all the
challenges posed:
− Core and Coreless Operation – The ability to verify a

wrapper with and without its core.

Copyright © 2005 - Globetech Solutions

Page 2 of 8

− Single and Multi-wrapper Operation – The ability to
verify a standalone wrapper and an IEEE P1500 daisy
chain of wrappers.

− Layered Monitoring – Observing behavior in
environments ranging from white-box to black-box.

− Flexibility – Ensuring that all configuration options
within the standard can be satisfied.

− Extensibility – Providing as much support for user
defined extensions as possible.

− Reusability – Being able to apply the environment across
providers, projects and hardware description levels.

− Input Abstraction Layering – Specifying vector stimuli
at different levels of abstraction.

− Functional Coverage Assessment – Measuring the
extent of functional coverage that has been exercised in
the system.

2. eVC Architecture
Due to the nature of the IEEE P1500 standard, the eVC

has been designed to be flexible and extensible, under the
recommendations of eRM™ (e Reuse Methodology) [9].
While flexibility allows for modeling virtually any IEEE
P1500 cell and wrapper configuration, extensibility enables
adding user-defined registers, instructions, checks and
coverage items and facilitates future work.

Figure 1 shows the modules of the eVC by using a
typical testing scenario: two daisy-chained IEEE P1500
wrapped cores, connected through the mandatory IEEE
P1500 serial interface. The first IEEE P1500 wrapper
contains the mandatory registers only, i.e. WIR, WBY and
WBR. The second one contains two user-defined registers in

addition to the mandatory set: a Wrapper Defined Register
(WDR) and a Core Defined Register (CDR).

We associate an eVC Agent with every wrapper in a
IEEE P1500 serial daisy chain. The agent associated with the
first wrapper in the chain is an ACTIVE one, while the rest of
them are PASSIVE. As the figure shows, each agent has a
Monitor (providing event identification, checking and
coverage capabilities) and a Reference Model (which mirrors
the behavior of the associated wrapper). The ACTIVE Agent
also encapsulates a Sequence Driver and a BFM
implementing constrained-random traffic generation and low-
level signal driving respectively.

All agents are linked together forming an e list. This way,
inter-agent communication can be achieved. For example, as
we will see in Section 3.2, the BFM communicates with the
Reference Model of each agent to learn the properties of each
register.

3. Constrained-Driven Input Generation
Dynamic, constrained-random traffic generation in a

IEEE P1500 daisy chain is carried out by the ACTIVE Agent.
Data generation takes place in the Sequence Driver, while the
task of actual signal driving is done by the BFM.

3.1. Sequence Driver
The Sequence Driver is a unit, providing a single point-

of-control for dynamic, constrained-random generation of
input data at three distinct levels of abstraction: P1500 event
level, transaction level and test level.

B
FM

Se
q

D
ri

ve
r

Model
Reference

WBY

WIR

c_i[2]

c_i[1]

c_i[0]

c_o[1]

c_o[0]

f_i[2]

f_i[1]

f_i[0]

f_o[1]

f_o[0]

WSI WSO

WSC

B
FM

Se
qu

en
ce

 D
ri

ve
r

Reference
Model

Checker

Monitor

Coverage

WBY

c_i[2]

c_i[1]

c_i[0]

c_o[1]

c_o[0]

CDR

WIR

WDR

f_i[2]

f_i[1]

f_i[0]

WSO

f_o[1]

f_o[0]

WSI

Checker

Monitor

Coverage

WBR
Cell

WBR
Cell

Wrapper

Wrapper

Agent 1

Agent 2 (PASSIVE)

(ACTIVE)
Agent 1

Core 1

Core 2

WSC

Figure 1. eVC architecture in a typical P1500 testing scenario

Copyright © 2005 - Globetech Solutions

Page 3 of 8

3.1.1. P1500 Event Level
P1500 events 1 control the operation of the wrapper

registers. This is the lowest level of abstraction inside the
Sequence Driver and includes the following P1500 events:
SHIFT_WIR, CAPTURE_WIR, UPDATE_WIR,
SHIFT_DR, CAPTURE_DR and UPDATE_DR. They are
implemented as eRM items, as shown in Figure 2.

P1500 events define both the way control signals (i.e.
WSC) are manipulated and the actual data to feed the
registers with. For a P1500 Shift event, a constrained-random
list of bits to feed WSI is also generated (serial_data). Both
the size and the contents of the list can be constrained by the
verification engineer. As an example, shown in Figure 2,
when SHIFT_DR is generated the size of the list is soft
constrained to be up to 1024.

For a P1500 Capture event, the accompanying data
generated consist of a list of bits for each wrapper
(parallel_data). For a certain wrapper, the respective list of
bits will feed the parallel inputs (if any) of the wrapper’s
active register. If it is a WIR-related P1500 event, the active
register is WIR. For DR-related P1500 events, the active
register is determined from the instruction currently loaded in
the wrapper. All necessary active register information for a
wrapper is provided by its associated Reference Model. The
size of each generated list for a Capture cannot be changed
by the verification engineer. It is always equal to the size of
the active register, independently of the register’s capability
to capture. It is BFM’s task to discover each register
attributes and decide whether to apply the data or not.
However, the contents of each list can be constrained at will.

1 To avoid confusion with Specman and e events, we will always refer to
P1500 events using its “P1500”prefix.

Finally, P1500 Update events have no actual data
associated with them.

3.1.2. Transaction Level
In this level, series of P1500 events are combined

together to form meaningful transactions. Higher-level
transactions can also be formed by previously defined lower-
level transactions, allowing for full flexibility and reusability
of code.

This level of abstraction is implemented with eRM
sequences. We have defined a number of interesting
sequences that are expected to be used in a P1500-compliant
testing environment. The set of pre-defined sequences is
implemented as an eRM sequence library.

As an example, consider the typical transaction that
loads instructions to wrappers in an IEEE P1500 daisy-chain.
Figure 3 shows LOAD_INSTRUCTIONS eRM sequence
sub-type that implements the transaction. The sequence
generates two P1500 events, a SHIFT_WIR followed by an
UPDATE_WIR. The contents of the data to be shifted into
the WIRs are computed to be equal to the opcode bits of the
instructions we want to load. The final P1500
UPDATE_WIR event loads the shifted data to the update
stage of each WIR. Note the extensibility of the sequence
sub-type code: it can be used in any testing scenario

type glbt_sect_action_t:
[SHIFT_WIR, UPDATE_WIR, CAPTURE_WIR,
SHIFT_DR, UPDATE_DR, CAPTURE_DR];

struct glbt_sect_item_s like any_sequence_item {
-- Defines the P1500 event
action: glbt_sect_action_t;
-- Bit list used for shifts
%serial_data: list of bit;
-- List of list of bits used for captures
%parallel_data: list of glbt_sect_bit_list_s;

when SHIFT_DR glbt_sect_item_s {
-- Generate up to 1024 shift bits unless
-- otherwise constrained
keep soft serial_data.size() > 0 and

serial_data.size <= 1024;
-- No parallel data need to be generated
keep parallel_data.size() == 0;

};
};

Figure 2. P1500 events modeled as eRM items

type glbt_sect_instr_name_t: [W_BYPASS, W_EX_TEST_S,
W_CORE_TEST_WS, W_PRELOAD_S];

extend glbt_sect_sequence_s_kind: [LOAD_INSTRUCTIONS];

extend LOAD_INSTRUCTIONS glbt_sect_sequence_s {
-- Constrainable field: List of instructions to load
instructions: list of glbt_sect_instr_name_t;

-- One instruction per agent
keep instructions.size() == env_p.num_of_agents;

-- Actual bit stream to shift in
!instr_stream: list of bit;

body() @driver.clock is only {
-- For each wrapper in the chain..
for w from (instructions.size() - 1) down to 0 do {
var instr_opcode: list of bit;
-- ..get the opcode for the instruction to load..
instr_opcode =
env_p.agents[w].instr_opcode(instructions[w]);
-- ..and add it to the stream
instr_stream.add(instr_opcode);

};
-- Shift the instruction bit stream into all WIRs
do SHIFT_WIR my_seq_item keeping {

.serial_data == instr_stream;
};
-- Finally, update all WIRs
do UPDATE_WIR my_seq_item;

};
};

Figure 3. Transaction LOAD_INSTRUCTIONS
implemented with eRM sequence sub-typing

Copyright © 2005 - Globetech Solutions

Page 4 of 8

employing anywhere from one to many wrappers in an IEEE
P1500 daisy chain.

3.1.3. Test Level
This is the highest level of abstraction, in which

transactions and/or P1500 events are combined to form
meaningful test scenarios. It is also implemented using eRM
sequences.

We have prepared a set of interesting tests that are based
on a strategically defined test plan for IEEE P1500 daisy
chains, consisting of N wrappers, N ≥ 1 [10]. This test suite
makes use of the sequences defined in the sequence library of
the lower level of abstraction.

Considering the two-wrapper configuration of Figure 1,
a meaningful test scenario could be the following. Load the
first wrapper with W_BYPASS and the second with
W_EX_TEST_S. Then, apply a sequence of CAPTURE_DR,
SHIFT_DR, UPDATE_DR P1500 events 1000 times, each
with random Capture Data contents and random Shift Data
length and contents. Figure 4 shows the code that implements
this scenario.

3.2. BFM
The BFM is a unit whose major responsibility is to do

the actual driving of items (i.e. P1500 events) to specific
DUT channels. Hence, it hides low level signal interfacing
from the rest of the eVC. In our eVC, BFM operates in
PULL_MODE, i.e. it explicitly requests a new item from the
Sequence Driver as long as it finishes with the driving of the
current one.

For each P1500 event, the BFM drives the IEEE P1500
WSC signals with the required values. For example, if the
current item represents a CAPTURE_WIR, then it asserts
two WSC signals (namely SelectWIR and CaptureWR) for
one WRCK cycle.

Depending on the P1500 event pulled, the BFM may
either drive WSI, register parallel inputs or nothing. For Shift

events, the serial_data list of bits that accompanies them is
fed to WSI bit-by-bit per WRCK cycle.

For Capture events, the item is accompanied by a list of
bits for every wrapper. The BFM communicates with all
Reference Models to find out the active register of each
wrapper. Then, for each active register it finds out the
properties of every cell2. A certain cell’s parallel input signal
is driven with the respective bit from the parallel_data lists
accompanying the CAPTURE_DR event unless:
− The cell cannot capture while its wrapper is loaded with

a specific instruction (e.g. WBR input cells at
W_CORE_TEST_WS).

− The cell’s parallel input signal is characterized as
“monitor only”, being driven by another HDL module
(e.g. WBR output cells driven by the core).

− The cell’s parallel input signal is not accessible to the
eVC (e.g. a WDR cell in a black-box wrapper
implementation).

− The cell does not have a parallel input signal.

What is of great importance to notice is the way the eVC

driving modules (i.e. sequence driver and BFM) fulfill the
requirements posed in Section 1. Specifically, they support
virtually any IEEE P1500 wrapper testing scenario with
combinations of the following alternatives:
− coreless IEEE P1500 wrappers or P1500 wrapped cores
− black-box or white-box implementations
− soft, firm or hard hardware description levels
− any test scenario ranging from standalone wrapper to

SoC level

4. Functional Coverage
Functional coverage collection is a sub-task of the

Monitor. Each Monitor identifies individual P1500 events by
watching the signals of its associated wrapper. Events
produced by the Monitor are used by the Functional
Coverage sub-module in order to fulfill its goals.

It is imperative that we strategically select the functional
coverage metrics in order to provide us with as much
information as possible on the functionality exercised by
running certain tests. We have defined a representative set of
functional coverage metrics that can be used for measuring
verification progress of black-box IEEE P1500 wrappers, i.e.
wrappers for which we have no information on the way their
cells and control logic have been designed and no
observability of wrapper internal signals. It is obvious that
the same metrics can be applied to white-box or partially
white-box implementations. Of course, access to white-box
wrapper internal structures can lead us to the definition of
more coverage metrics giving a better insight of the

2 Cells inside a register may have different properties, resulting in different
behavior. For example WBR input and output cells differ in their behavior
upon CAPTURE_DR, when W_EX_TEST_S or W_CORE_TEST_WS is
loaded.

extend MAIN glbt_sect_sequence_s {
!instr_seq: LOAD_INSTRUCTIONS glbt_sect_sequence_s;

body() @driver.clock is only {
do instr_seq keeping {

.instructions == {W_BYPASS; W_EX_TEST_S};
};
for i from 0 to 999 do {

do my_seq_item keeping {
.action in [SHIFT_DR, CAPTURE_DR, UPDATE_DR];

};
};
stop_run();

};
};

Figure 4. Test example of W_EX_TEST_S instruction

Copyright © 2005 - Globetech Solutions

Page 5 of 8

functionality that has been exercised. The extensibility
feature of the eVC allows us to define new coverage metrics
a posteriori with little effort. Also, the metrics presented here
apply to both coreless IEEE P1500 wrappers and to IEEE
P1500 wrapped cores. Finally, the set is suitable to measure
coverage in a multi-wrapper scenario, in which all wrappers
are connected through their mandatory serial TAM in a
daisy-chain way. Results will be represented on a per
wrapper basis for metrics that may vary among wrappers.

In what follows we list some of the metrics we find
interesting to demonstrate.

Instructions loaded [per wrapper]. Each reference model is
capable of discovering which instruction is loaded in its
wrapper upon each UPDATE_WIR P1500 event. In a multi-
wrapper scenario, the instructions loaded vary among the
wrappers so this information will be gathered on a per
wrapper basis. This metric will help us discover if there are
untested instructions in a wrapper.

P1500 events applied. P1500 events are caught by each
Monitor. Coverage information is unique for all wrappers in
an IEEE P1500 daisy chain because they share the same
control lines of the mandatory serial TAM. This metric helps
us discover if we have applied all possible P1500 events to
the wrappers.

Instructions × P1500 events [per wrapper]. Using coverage
collector’s ability to cross two or more metrics, we
implemented the cross coverage metric of instructions and
P1500 events per wrapper. Notice that in a multi-wrapper
scenario this cross metric has to be presented on a per
wrapper basis since the instructions metric varies for each
wrapper. This metric will help us discover if all P1500 events
have been tested for each instruction loaded on every
wrapper.

Number of successive shifts [per register] [per wrapper].
This metric shows the number of successive shifts on each
register of a wrapper. The result of this metric for each
register is shown as a comparison to the register's size. For

example, for a WIR of 4 bits, we are interested in seeing if
there have been less than 4 consecutive shifts, more than 4
consecutive shifts and exactly 4 consecutive shifts. It is
obvious that this metric is unique for each register of each
wrapper.

For implementing coverage collection on a per wrapper
basis we used the per_instance coverage item option on the
agent name. Figure 5 shows its usage in implementing the
number of successive shifts metric. The coverage metric is
defined inside the register struct so that it is inherited in every
register of the environment, including user-defined ones,
resulting in great extensibility.

5. Error Checking
Error checking is also a sub-task of the Monitor. Events

emitted by the Monitor provide the timing at which error
checking is performed. The checking is done on a per-
wrapper basis and is based on the use of a Reference Model
which is manipulated by the Monitor.

5.1. Reference Model
The Reference Model is a struct instantiated under every

agent and is closely associated with its IEEE P1500 wrapper
modeling its structure and behavior. It uses certain events
emitted by the Monitor to update its internal state. Developed
with both flexibility and extensibility in mind, the Reference
Model can support virtually all P1500-compliant structures,
whether P1500 or user defined:
− P1500- compliant registers - any number, any size.
− P1500-compliant cells - any implementation, any

isolation behavior.
− P1500-compliant instructions - any number, any opcode,

any behavior.

The critical entity in the reference model is the cell. The
verification engineer is able to define each cell’s
configuration by simply constraining certain fields in the
configuration file. Figure 6 shows how the Reference Model
of the first agent of Figure 1 can be configured to model its
respective WBR. The first extension configures the register
size, while the second one sets the attributes of WBR cells.
Notice that attributes can apply to all cells or differentiate
between input or output cells.

Figure 7 depicts the way to extend the environment in
order to define a new register: WDR at the second agent of
Figure 1. It is easily done by adding its kind to the register
kind type, defining it at the reference model struct and
configuring it like WBR was in Figure 6.

5.2. Checking
The nature of the IEEE P1500 standard allows for many

alternative internal IEEE P1500 wrapper implementations
concerning cells, WIR decoder and other structures, so that
exact internal signal names and timing can only be provided

type glbt_sect_reg_kind_t: [WIR, WBY, WBR];

extend glbt_sect_ref_model_register_s {
cover shift_done_cov_e is {

-- The "per wrapper" implementation
item agent_name using per_instance;
-- "kind" is of type "glbt_sect_reg_kind_t"
item kind using using no_collect;
-- "shifts" are automatically counted
item shifts using no_collect;
-- Present results per register
cross kind, shifts;

};
};

Figure 5. Implementation example of "per
wrapper" coverage collection.

Copyright © 2005 - Globetech Solutions

Page 6 of 8

by the wrapper designer. In other words, checking assertions
have to be defined by considering the IEEE P1500 wrapper
as a black-box in general but also giving the verification
engineer the ability to define their own assertions in the case
internal implementation details are known. Moreover, to
address the extensibility nature of IEEE P1500 standard, the
eVC allows for error checking to be inherited in user-defined
registers minimizing effort and maximizing reuse.

We propose a list of error checks that fulfill the
requirements posed in Section 1.

WSO checking – The value of WSO signal is compared
against the LS bit of the wrapper’s active register to verify
this register's integrity. A DUT error is reported if the values
do not match. The active register and its LS bit value are
provided by the Reference Model.

Wrapper normal mode checking – When wrapper is in
normal (i.e. pass-through) mode (e.g. W_BYPASS is loaded),
the values applied on parallel input signals of WBR cells (i.e.
f_i[2:0] and c_o[1:0] in the example of Figure 1) are checked

against values on their parallel output signals (i.e. c_i[2:0]
and f_o[1:0], respectively). When the values do not match a
DUT error is issued.

Wrapper internal/external isolation mode checking – When
wrapper is in internal (e.g. W_CORE_TEST_WS is loaded)
or external (e.g. W_EX_TEST_S is loaded) isolation mode,
values stored inside WBR cells are compared against values
on their parallel output signals (i.e. c_i[2:0] and f_o[1:0),
upon each P1500 event to verify isolation of the wrapper. If
the values on the parallel output signals do not match the
expected ones when the check is done, a DUT error is issued.
Internal values of WBR cells are provided by the Reference
Model.

Update checking – Provided that WBR has an update stage,
we check that its parallel output signals (i.e. c_i[2:0] and
f_o[1:0]) get updated with its cells internal values when
UPDATE_DR is issued and the instruction loaded permits so.
If the values on the parallel output signals do not match the
expected ones when the check is done, a DUT error is issued.
Internal values of WBR cells are provided by the Reference
Model again. This functionality is inherent on all register
types, including user-defined registers, sub-typed from the
basic register type the eVC provides. Should the verification
engineer desire to modify or add to the inherited checking
functionality upon UPDATE_DR events, they can do so by
overriding the hook method provided.

Shift checking – If WBR does not have an update stage, we
check that its parallel output signals (i.e. c_i[2:0] and
f_o[1:0]) get the values of its cells internal values when
SHIFT_DR is issued. If the values on the parallel output
signals do not match the expected ones when the check is
done, a DUT error is issued. Internal values of WBR cells are
provided by the Reference Model of course. Similarly to the
previous check functionality, the verification engineer may
modify or add to the hook method provided to implement
their own checks upon SHIFT_DR.

extend AG_0 WBR glbt_sect_register_s {
keep size == 5;

};

extend AG_0 WBR glbt_sect_register_cell_s {
-- Constraints for all cells of WBR
keep reset_value == 0;
keep value_known == FALSE;
keep has_update_stage == TRUE;

-- WBR[4..2]: Input cells
keep (cell_index >= 2) =>

can_capture_on == {W_EX_TEST_S};
keep (cell_index >= 2) =>

can_update_on == {W_CORE_TEST_WS};
keep (cell_index >= 2) =>

p_in == append("f_i[", dec(cell_index-2), "]");
keep (cell_index >= 2) =>

p_in_monitor_only == FALSE;
keep (cell_index >= 2) =>

p_out == append("c_i[", dec(cell_index-2), "]");

-- WBR[1..0]: Output cells
keep (cell_index < 2) =>

can_capture_on == {W_CORE_TEST_WS};
keep (cell_index < 2) =>

can_update_on == {W_EX_TEST_S};
keep (cell_index < 2) =>

p_in == append("c_o[", dec(cell_index),"]");
keep (cell_index >= 2) =>

p_in_monitor_only == TRUE;
keep (cell_index < 2) =>

p_out == append("f_o[", dec(cell_index),"]");
};

Figure 6. Reference Model configuration example

extend glbt_sect_reg_kind_t: [WDR];

extend AG_1 glbt_sect_ref_model_s {
wdr: WDR glbt_sect_register_s;

};

extend AG_1 WDR glbt_sect_register_s {
keep name == "Wrapper Defined Register";
keep size == 4;

};

extend AG_1 WDR glbt_sect_register_cell_s {
-- Constrain attributes appropriately here..

};

Figure 7. Definition of user-defined register (WDR)

Copyright © 2005 - Globetech Solutions

Page 7 of 8

6. JTAG TAP Support at the SoC Level
The IEEE 1500 standard proposal defines the test

infrastructure at the embedded core level. However, the
proposal does not dictate the way to connect IEEE P1500
wrapped cores at the SoC level. A typical way of connecting
wrapped cores to primary terminals at the SoC level is to use
an IEEE Std. 1149.1 (JTAG) Test Access Port (TAP) and
Controller. Such an example is shown in Figure 8. The JTAG
TAP Controller simply translates the JTAG serial interface to
the IEEE P1500 serial interface.

IEEE 1149.1 standard defines a State Diagram resulting
in strict sequences of register accesses. Briefly, a data register
access must start with a capture, followed by zero or more
shifts, followed by an update. The same sequence holds for
instruction register accesses. Hence, there are two possible
P1500 event sequences only, coming out of the JTAG TAP
Controller:
− CAPTURE_DR, *SHIFT_DR, UPDATE_DR
− CAPTURE_WIR, *SHIFT_WIR, UPDATE_WIR

Let us refer to the first sequence as JTAG_SCAN_DR
and to the second one as JTAG_SCAN_WIR. Now, we
consider JTAG_SCAN_DR and JTAG_SCAN_WIR as basic
JTAG events. One can give any JTAG event to the JTAG
TAP Controller by driving its TMS input appropriately, as
defined in the JTAG State Diagram.

The eVC supports the usage of a JTAG TAP Controller,
by just configuring the generation and driving layers to
generate and drive JTAG events as eRM items. The change
affects the two active units: Sequence Driver and BFM.

In the Sequence Driver level, the basic eRM item type
has been extended to include the two JTAG events. When a
JTAG TAP controller is present, the item is constrained to be
of JTAG event type only. Else, the item is constrained to be
of P1500 event type only (the default case). Also, not all
sequence sub-types defined in the sequence library are valid
when JTAG TAP Controller is present. For example, a
sequence sub-type that issues a CAPTURE_DR followed by
a SHIFT_WIR is not valid in JTAG. Such sequence sub-
types just type a warning message at JTAG’s presence. On
the other hand, any sequence sub-type that results in one or
more repetitions of JTAG_SCAN_DR or JTAG_SCAN_WIR,
is valid for JTAG. These sub-types result in generating JTAG
events as eRM items.

The BFM needs to implement a different interface
protocol in the case of JTAG. Its main TCM executes a
different thread in this case, implementing the JTAG State
Diagram and driving the JTAG interface signals. To achieve
this, the signal map of the ACTIVE agent also needs to be
extended with the signal names of the JTAG interface.

Units and structs in both Sequence Driver and BFM
level are notified on the presence of JTAG TAP Controller
by a global environment variable, which is constrained by the
verification engineer at the configuration file.

With the above mentioned approach, test level remains
unchanged. The same tests can be run either with or without
a JTAG TAP Controller. In the case of JTAG, if test uses a
sequence that does not comply with the standard, that
sequence will just type a warning message and the test will
continue.

Core 1

P1500 Wrapper

functional
output

P1500 Wrapper

functional
input

functional
input output

functional

Core N

TRSTN

TCK

TMS

TDI

TDO

WSC

WSI WSO

(ACTIVE)
Agent 1

Reference
Model

Checker

Monitor

Coverage Checker

Monitor

Coverage
Model

Reference

Agent N (PASSIVE)

WSI WSO

Se
qu

en
ce

 D
ri

ve
r

B
FM

System Chip

JTAG
TAP
Ctrl

Figure 8. eVC operation at SoC level with JTAG TAP

Copyright © 2005 - Globetech Solutions

Page 8 of 8

Concerning the passive elements of the eVC, these are
still associated to IEEE P1500 wrappers by monitoring the
IEEE P1500 serial interfaces, as Figure 8 depicts. This means
that monitoring, checking and coverage collection is done on
the IEEE P1500 serial interfaces, as if JTAG does not exist.
One detail that the verification engineer can notice if JTAG is
present concerns the P1500 event transition coverage item
(derived with transitioning P1500 events coverage item,
presented in Section 4). In this case, only transitions derived
from JTAG_SCAN_DR and JTAG_SCAN_WIR can be seen.
In the coverage results presented, every other transition will
always be uncovered. The verification engineer is given the
choice to either see these transitions or hide them from the
coverage results as illegal.

7. Conclusions
In this paper, we presented a highly configurable, eVC

architecture for thoroughly verifying P1500-compliant test
infrastructures. The eVC addresses all challenges posed by
the imminent IEEE 1500 standard having been designed with
flexibility and extensibility in mind through all its levels and
modules. Features include constrained-random vector
generation, automated checking and coverage metrics
definition, making the environment suitable for fully
verifying infrastructures under virtually any configuration.
Examples of e code have also been demonstrated in order to
give a better insight of the eVC operation and configuration
parameters. Finally, we illustrated how the eVC can support
verification at the SoC level, for systems deploying the IEEE
1149.1 (JTAG) for chip terminal access.

References

[1] Y. Zorian and E. J. Marinissen, "Testing Embedded-

Core-Based System Chips," IEEE Computer, vol. 32,
pp. 52-60, 1999.

[2] E. J. Marinissen, R. Kapur, M. Lousberg, T.
McLaurin, M. Ricchetti, and Y. Zorian, "On IEEE
P1500's Standard for Embedded Core Test," Journal
of Electronic Testing, vol. 18, pp. 365-383, 2002.

[3] F. DaSilva, Y. Zorian, L. Whetsel, K. Arabi, and R.
Kapur, "Overview of the IEEE P1500 Standard," in
the proceedings of International Test Conference,
Charlotte Convention Center, Charlotte, NC, USA,
Sep 30 - Oct 2, 2003, pp. 988-997.

[4] T. McLaurin and S. Ghosh, "ETM10 Incorporates
Hardware Segment of IEEE P1500," Design & Test
of Computers, IEEE, vol. 19, pp. 8-13, 2002.

[5] S. Picchiotino, M. Diaz-Nava, B. Foret, S. Engels,
and R. Wilson, "Platform to Validate SoC Designs
and Methodologies Targeting Nanometer CMOS
Technologies," in the proceedings of IP-SOC,
Espace Congres du World Trade Center, Grenoble,
France, Dec 8-9, 2004, pp. 39-44.

[6] D. Appello, F. Corno, M. Giovinetto, M.
Rebaudengo, and M. Sonza Reorda, "A P1500
compliant BIST-based approach to embedded RAM
Diagnosis," in the proceedings of 10th Asian Test
Symposium, Kyoto, Japan, Nov. 19-21, 2001, pp.
97-102.

[7] IEEE Computer Society, "IEEE Standard Test
Access Port and Boundary-Scan Architecture -
IEEE Std. 1149.1-2001", New York: IEEE, 2001.

[8] K. Melocco, H. Arora, P. Setlak, G. Kunselman, and
S. Mardhani, "A Comprehensive Approach to
Assessing and Analyzing 1149.1 Test Logic," in the
proceedings of International Test Conference,
Charlotte Convention Center,Charlotee, NC, USA,
Sep 30 - Oct 2, 2003, pp. 358-367.

[9] "e Reuse Methodology (eRM) Developer Manual",
Verisity Design, Inc, 2003.

[10] I. Diamantidis, T. Oikonomou, and S. Diamantidis.
"Towards an IEEE P1500 Verification
Infrastructure: A Comprehensive Approach",
Globetech Solutions, 2005.

