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Abstract 

Core-based design and reuse have been the key elements 
of efficient System-On-Chip (SoC) development. Testing of 
the embedded cores, however, introduces important 
challenges, such as core test reuse and interoperability at the 
SoC level, as well as the need for defining a common test 
infrastructure among cores from different suppliers. The 
IEEE 1500 Proposal for a Standard for Embedded Core 
Testing addresses these issues by proposing a flexible 
hardware test wrapper architecture for embedded cores 
together with a Core Test Language. In this paper we justify 
the need to thoroughly verify the functionality of the complete 
testing hardware infrastructure in P1500-compliant SoCs. 
We present a coverage-driven verification approach based 
on an eVC architecture, which can be part of the overall SoC 
level validation strategy, being equally flexible and 
extensible to the IEEE P1500’s proposed hardware 
infrastructure. 

1. Introduction 
Design reuse has been the key element to designing 

increasingly complex Systems-On-Chip. The model of PCB 
development in which pre-manufactured ICs are reused has 
been transferred to the chip level. The designers create 
libraries of predesigned and preverified building blocks, or 
embedded cores, which make it easier to reuse complete 
functionality to new Systems-On-Chip.  

However, while an IC provider delivers manufactured 
and tested components to be used in a PCB, embedded core 
providers deliver components in a range of hardware 
description levels. It is the SoC integrator’s responsibility to 
put together all the embedded cores and test the 
manufactured SoC. With the embedded cores typically 
coming from different suppliers it has become a necessity to 
provide a standard test infrastructure to address the issues of 
test reuse and interoperability at the SoC level.  

The IEEE 1500 Proposal for Standard for Embedded 
Core Testing proposes a flexible test infrastructure 
comprising of a hardware wrapper architecture and a Core 
Test Language [1-3]. With the imminent release of IEEE 
1500 standard, industry support is growing significantly. 
EDA tools capable of generating IEEE P1500 core wrappers 
have emerged in addition to the ATE/Tester extensions to 

support the standard. Both sides exploit the CTL modeling 
information of the embedded cores. Also, several significant 
IP providers have announced IEEE P1500 compliance in 
both existing and future design blocks. 

Related publications have presented work done on SoCs 
built with IEEE P1500 testability features [4, 5]. Extensions 
to the mandatory IEEE P1500 register set in order to support 
already working testability hardware, e.g. BIST is covered in 
[6]. IEEE P1500 has borrowed many features from its IC 
counterpart standard, IEEE 1149.1 JTAG [7]. The authors of 
[8] describe an approach of verifying JTAG logic using a 
combination of simulation of black-box checks and tracing. 

We recognize the need for taking a comprehensive 
approach to thoroughly verify the functionality of IEEE 
P1500 wrappers and wrapped cores in a SoC environment. 
The need originates from the fact that an IEEE P1500 
wrapper is itself a hardware design, which can be created in-
house or sourced externally, designed by engineer or 
generated by tool. In any case a P1500-compliant design is 
subject to a range of possible errors so complete and 
methodical verification of the IEEE P1500 test logic is 
needed. 

It is of great importance to understand the challenges 
arising from the IEEE P1500 standard and create a 
verification environment that faces them efficiently. First of 
all, P1500-compliant core providers need to ensure that their 
deliverable, most likely soft IP, complies to the standard and 
is functionally sound. On the other hand, SoC integrators 
dealing with P1500-compliant embedded cores need to 
validate wrapper functionality both at the standalone and 
SoC levels. Moreover, correct wrapper functionality needs to 
be ensured upon synthesis of the design, now at the gate level. 

The nature of the IEEE P1500 standard itself poses two 
important challenges. Firstly, IEEE P1500 allows for a 
plethora of cell behaviors and implementations resulting in 
great flexibility. In addition, the standard leaves room for the 
users to define their own wrapper instructions and registers 
extending the standard’s mandatory set. 

All the above can be summarized in a list of features that 
the verification environment must offer to address all the 
challenges posed: 
− Core and Coreless Operation – The ability to verify a 

wrapper with and without its core. 
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− Single and Multi-wrapper Operation – The ability to 
verify a standalone wrapper and an IEEE P1500 daisy 
chain of wrappers. 

− Layered Monitoring – Observing behavior in 
environments ranging from white-box to black-box. 

− Flexibility – Ensuring that all configuration options 
within the standard can be satisfied. 

− Extensibility – Providing as much support for user 
defined extensions as possible. 

− Reusability – Being able to apply the environment across 
providers, projects and hardware description levels. 

− Input Abstraction Layering – Specifying vector stimuli 
at different levels of abstraction. 

− Functional Coverage Assessment – Measuring the 
extent of functional coverage that has been exercised in 
the system. 

2. eVC Architecture 
Due to the nature of the IEEE P1500 standard, the eVC 

has been designed to be flexible and extensible, under the 
recommendations of eRM™ (e Reuse Methodology) [9]. 
While flexibility allows for modeling virtually any IEEE 
P1500 cell and wrapper configuration, extensibility enables 
adding user-defined registers, instructions, checks and 
coverage items and facilitates future work.  

Figure 1 shows the modules of the eVC by using a 
typical testing scenario: two daisy-chained IEEE P1500 
wrapped cores, connected through the mandatory IEEE 
P1500 serial interface. The first IEEE P1500 wrapper 
contains the mandatory registers only, i.e. WIR, WBY and 
WBR. The second one contains two user-defined registers in 

addition to the mandatory set: a Wrapper Defined Register 
(WDR) and a Core Defined Register (CDR).  

We associate an eVC Agent with every wrapper in a 
IEEE P1500 serial daisy chain. The agent associated with the 
first wrapper in the chain is an ACTIVE one, while the rest of 
them are PASSIVE. As the figure shows, each agent has a 
Monitor (providing event identification, checking and 
coverage capabilities) and a Reference Model (which mirrors 
the behavior of the associated wrapper). The ACTIVE Agent 
also encapsulates a Sequence Driver and a BFM 
implementing constrained-random traffic generation and low-
level signal driving respectively. 

All agents are linked together forming an e list. This way, 
inter-agent communication can be achieved. For example, as 
we will see in Section 3.2, the BFM communicates with the 
Reference Model of each agent to learn the properties of each 
register.  

3. Constrained-Driven Input Generation 
Dynamic, constrained-random traffic generation in a 

IEEE P1500 daisy chain is carried out by the ACTIVE Agent. 
Data generation takes place in the Sequence Driver, while the 
task of actual signal driving is done by the BFM.  

3.1. Sequence Driver 
The Sequence Driver is a unit, providing a single point-

of-control for dynamic, constrained-random generation of 
input data at three distinct levels of abstraction: P1500 event 
level, transaction level and test level. 
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3.1.1. P1500 Event Level 
P1500 events 1  control the operation of the wrapper 

registers. This is the lowest level of abstraction inside the 
Sequence Driver and includes the following P1500 events: 
SHIFT_WIR, CAPTURE_WIR, UPDATE_WIR, 
SHIFT_DR, CAPTURE_DR and UPDATE_DR.  They are 
implemented as eRM items, as shown in Figure 2. 

P1500 events define both the way control signals (i.e. 
WSC) are manipulated and the actual data to feed the 
registers with. For a P1500 Shift event, a constrained-random 
list of bits to feed WSI is also generated (serial_data). Both 
the size and the contents of the list can be constrained by the 
verification engineer. As an example, shown in Figure 2, 
when SHIFT_DR is generated the size of the list is soft 
constrained to be up to 1024. 

For a P1500 Capture event, the accompanying data 
generated consist of a list of bits for each wrapper 
(parallel_data). For a certain wrapper, the respective list of 
bits will feed the parallel inputs (if any) of the wrapper’s 
active register. If it is a WIR-related P1500 event, the active 
register is WIR. For DR-related P1500 events, the active 
register is determined from the instruction currently loaded in 
the wrapper. All necessary active register information for a 
wrapper is provided by its associated Reference Model. The 
size of each generated list for a Capture cannot be changed 
by the verification engineer. It is always equal to the size of 
the active register, independently of the register’s capability 
to capture. It is BFM’s task to discover each register 
attributes and decide whether to apply the data or not. 
However, the contents of each list can be constrained at will. 
                                                 
1 To avoid confusion with Specman and e events, we will always refer to 
P1500 events using its “P1500”prefix. 

Finally, P1500 Update events have no actual data 
associated with them. 

3.1.2. Transaction Level 
In this level, series of P1500 events are combined 

together to form meaningful transactions. Higher-level 
transactions can also be formed by previously defined lower-
level transactions, allowing for full flexibility and reusability 
of code.  

This level of abstraction is implemented with eRM 
sequences. We have defined a number of interesting 
sequences that are expected to be used in a P1500-compliant 
testing environment. The set of pre-defined sequences is 
implemented as an eRM sequence library. 

As an example, consider the typical transaction that 
loads instructions to wrappers in an IEEE P1500 daisy-chain. 
Figure 3 shows LOAD_INSTRUCTIONS eRM sequence 
sub-type that implements the transaction. The sequence 
generates two P1500 events, a SHIFT_WIR followed by an 
UPDATE_WIR. The contents of the data to be shifted into 
the WIRs are computed to be equal to the opcode bits of the 
instructions we want to load. The final P1500 
UPDATE_WIR event loads the shifted data to the update 
stage of each WIR. Note the extensibility of the sequence 
sub-type code: it can be used in any testing scenario 

type glbt_sect_action_t:
[SHIFT_WIR, UPDATE_WIR, CAPTURE_WIR,
SHIFT_DR, UPDATE_DR, CAPTURE_DR];

struct glbt_sect_item_s like any_sequence_item {
-- Defines the P1500 event
action: glbt_sect_action_t;
-- Bit list used for shifts
%serial_data: list of bit;
-- List of list of bits used for captures
%parallel_data: list of glbt_sect_bit_list_s;

when SHIFT_DR glbt_sect_item_s {
-- Generate up to 1024 shift bits unless
-- otherwise constrained
keep soft serial_data.size() > 0 and

serial_data.size <= 1024;
-- No parallel data need to be generated
keep parallel_data.size() == 0;

};
};

Figure 2. P1500 events modeled as eRM items 

type glbt_sect_instr_name_t: [W_BYPASS, W_EX_TEST_S,
W_CORE_TEST_WS, W_PRELOAD_S];

extend glbt_sect_sequence_s_kind: [LOAD_INSTRUCTIONS];

extend LOAD_INSTRUCTIONS glbt_sect_sequence_s {
-- Constrainable field: List of instructions to load
instructions: list of glbt_sect_instr_name_t;

-- One instruction per agent
keep instructions.size() == env_p.num_of_agents;

-- Actual bit stream to shift in
!instr_stream: list of bit;

body() @driver.clock is only {
-- For each wrapper in the chain..
for w from (instructions.size() - 1) down to 0 do {
var instr_opcode: list of bit;
-- ..get the opcode for the instruction to load..
instr_opcode =
env_p.agents[w].instr_opcode(instructions[w]);
-- ..and add it to the stream
instr_stream.add(instr_opcode);

};
-- Shift the instruction bit stream into all WIRs
do SHIFT_WIR my_seq_item keeping {

.serial_data == instr_stream;
};
-- Finally, update all WIRs
do UPDATE_WIR my_seq_item;

};
};

Figure 3. Transaction LOAD_INSTRUCTIONS 
implemented with eRM sequence sub-typing 
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employing anywhere from one to many wrappers in an IEEE 
P1500 daisy chain. 

3.1.3. Test Level 
This is the highest level of abstraction, in which 

transactions and/or P1500 events are combined to form 
meaningful test scenarios. It is also implemented using eRM 
sequences.  

We have prepared a set of interesting tests that are based 
on a strategically defined test plan for IEEE P1500 daisy 
chains, consisting of N wrappers, N ≥ 1 [10]. This test suite 
makes use of the sequences defined in the sequence library of 
the lower level of abstraction. 

Considering the two-wrapper configuration of Figure 1, 
a meaningful test scenario could be the following. Load the 
first wrapper with W_BYPASS and the second with 
W_EX_TEST_S. Then, apply a sequence of CAPTURE_DR, 
SHIFT_DR, UPDATE_DR P1500 events 1000 times, each 
with random Capture Data contents and random Shift Data 
length and contents. Figure 4 shows the code that implements 
this scenario. 

3.2. BFM 
The BFM is a unit whose major responsibility is to do 

the actual driving of items (i.e. P1500 events) to specific 
DUT channels. Hence, it hides low level signal interfacing 
from the rest of the eVC. In our eVC, BFM operates in 
PULL_MODE, i.e. it explicitly requests a new item from the 
Sequence Driver as long as it finishes with the driving of the 
current one. 

For each P1500 event, the BFM drives the IEEE P1500 
WSC signals with the required values. For example, if the 
current item represents a CAPTURE_WIR, then it asserts 
two WSC signals (namely SelectWIR and CaptureWR) for 
one WRCK cycle.  

Depending on the P1500 event pulled, the BFM may 
either drive WSI, register parallel inputs or nothing. For Shift 

events, the serial_data list of bits that accompanies them is 
fed to WSI bit-by-bit per WRCK cycle. 

For Capture events, the item is accompanied by a list of 
bits for every wrapper. The BFM communicates with all 
Reference Models to find out the active register of each 
wrapper. Then, for each active register it finds out the 
properties of every cell2. A certain cell’s parallel input signal 
is driven with the respective bit from the parallel_data lists 
accompanying the CAPTURE_DR event unless:  
− The cell cannot capture while its wrapper is loaded with 

a specific instruction (e.g. WBR input cells at 
W_CORE_TEST_WS). 

− The cell’s parallel input signal is characterized as 
“monitor only”, being driven by another HDL module 
(e.g. WBR output cells driven by the core).  

− The cell’s parallel input signal is not accessible to the 
eVC (e.g. a WDR cell in a black-box wrapper 
implementation). 

− The cell does not have a parallel input signal. 
 
What is of great importance to notice is the way the eVC 

driving modules (i.e. sequence driver and BFM) fulfill the 
requirements posed in Section 1. Specifically, they support 
virtually any IEEE P1500 wrapper testing scenario with 
combinations of the following alternatives:  
− coreless IEEE P1500 wrappers or P1500 wrapped cores 
− black-box or white-box implementations 
− soft, firm or hard hardware description levels 
− any test scenario ranging from standalone wrapper to 

SoC level 

4. Functional Coverage 
Functional coverage collection is a sub-task of the 

Monitor. Each Monitor identifies individual P1500 events by 
watching the signals of its associated wrapper. Events 
produced by the Monitor are used by the Functional 
Coverage sub-module in order to fulfill its goals.  

It is imperative that we strategically select the functional 
coverage metrics in order to provide us with as much 
information as possible on the functionality exercised by 
running certain tests. We have defined a representative set of 
functional coverage metrics that can be used for measuring 
verification progress of black-box IEEE P1500 wrappers, i.e. 
wrappers for which we have no information on the way their 
cells and control logic have been designed and no 
observability of wrapper internal signals. It is obvious that 
the same metrics can be applied to white-box or partially 
white-box implementations. Of course, access to white-box 
wrapper internal structures can lead us to the definition of 
more coverage metrics giving a better insight of the 

                                                 
2 Cells inside a register may have different properties, resulting in different 
behavior. For example WBR input and output cells differ in their behavior 
upon CAPTURE_DR, when W_EX_TEST_S or W_CORE_TEST_WS is 
loaded. 

extend MAIN glbt_sect_sequence_s {
!instr_seq: LOAD_INSTRUCTIONS glbt_sect_sequence_s;

body() @driver.clock is only {
do instr_seq keeping {

.instructions == {W_BYPASS; W_EX_TEST_S};
};
for i from 0 to 999 do {

do my_seq_item keeping {
.action in [SHIFT_DR, CAPTURE_DR, UPDATE_DR];

};
};
stop_run();

};
};

Figure 4. Test example of W_EX_TEST_S instruction 
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functionality that has been exercised. The extensibility 
feature of the eVC allows us to define new coverage metrics 
a posteriori with little effort. Also, the metrics presented here 
apply to both coreless IEEE P1500 wrappers and to IEEE 
P1500 wrapped cores. Finally, the set is suitable to measure 
coverage in a multi-wrapper scenario, in which all wrappers 
are connected through their mandatory serial TAM in a 
daisy-chain way. Results will be represented on a per 
wrapper basis for metrics that may vary among wrappers.  

In what follows we list some of the metrics we find 
interesting to demonstrate. 

 
Instructions loaded [per wrapper]. Each reference model is 
capable of discovering which instruction is loaded in its 
wrapper upon each UPDATE_WIR P1500 event. In a multi-
wrapper scenario, the instructions loaded vary among the 
wrappers so this information will be gathered on a per 
wrapper basis. This metric will help us discover if there are 
untested instructions in a wrapper. 

 
P1500 events applied. P1500 events are caught by each 
Monitor. Coverage information is unique for all wrappers in 
an IEEE P1500 daisy chain because they share the same 
control lines of the mandatory serial TAM. This metric helps 
us discover if we have applied all possible P1500 events to 
the wrappers. 

 
Instructions × P1500 events [per wrapper]. Using coverage 
collector’s ability to cross two or more metrics, we 
implemented the cross coverage metric of instructions and 
P1500 events per wrapper. Notice that in a multi-wrapper 
scenario this cross metric has to be presented on a per 
wrapper basis since the instructions metric varies for each 
wrapper. This metric will help us discover if all P1500 events 
have been tested for each instruction loaded on every 
wrapper. 
 
Number of successive shifts [per register] [per wrapper]. 
This metric shows the number of successive shifts on each 
register of a wrapper. The result of this metric for each 
register is shown as a comparison to the register's size. For 

example, for a WIR of 4 bits, we are interested in seeing if 
there have been less than 4 consecutive shifts, more than 4 
consecutive shifts and exactly 4 consecutive shifts. It is 
obvious that this metric is unique for each register of each 
wrapper. 

For implementing coverage collection on a per wrapper 
basis we used the per_instance coverage item option on the 
agent name. Figure 5 shows its usage in implementing the 
number of successive shifts metric. The coverage metric is 
defined inside the register struct so that it is inherited in every 
register of the environment, including user-defined ones, 
resulting in great extensibility. 

5. Error Checking 
Error checking is also a sub-task of the Monitor. Events 

emitted by the Monitor provide the timing at which error 
checking is performed. The checking is done on a per-
wrapper basis and is based on the use of a Reference Model 
which is manipulated by the Monitor. 

5.1. Reference Model 
The Reference Model is a struct instantiated under every 

agent and is closely associated with its IEEE P1500 wrapper 
modeling its structure and behavior. It uses certain events 
emitted by the Monitor to update its internal state. Developed 
with both flexibility and extensibility in mind, the Reference 
Model can support virtually all P1500-compliant structures, 
whether P1500 or user defined: 
− P1500- compliant registers - any number, any size. 
− P1500-compliant cells - any implementation, any 

isolation behavior.  
− P1500-compliant instructions - any number, any opcode, 

any behavior. 
 

The critical entity in the reference model is the cell. The 
verification engineer is able to define each cell’s 
configuration by simply constraining certain fields in the 
configuration file. Figure 6 shows how the Reference Model 
of the first agent of Figure 1 can be configured to model its 
respective WBR. The first extension configures the register 
size, while the second one sets the attributes of WBR cells. 
Notice that attributes can apply to all cells or differentiate 
between input or output cells. 

Figure 7 depicts the way to extend the environment in 
order to define a new register: WDR at the second agent of 
Figure 1. It is easily done by adding its kind to the register 
kind type, defining it at the reference model struct and 
configuring it like WBR was in Figure 6. 

5.2. Checking 
The nature of the IEEE P1500 standard allows for many 

alternative internal IEEE P1500 wrapper implementations 
concerning cells, WIR decoder and other structures, so that 
exact internal signal names and timing can only be provided 

type glbt_sect_reg_kind_t: [WIR, WBY, WBR];

extend glbt_sect_ref_model_register_s {
cover shift_done_cov_e is {

-- The "per wrapper" implementation
item agent_name using per_instance;
-- "kind" is of type "glbt_sect_reg_kind_t"
item kind using using no_collect;
-- "shifts" are automatically counted
item shifts using no_collect;
-- Present results per register
cross kind, shifts;

};
};

Figure 5. Implementation example of "per 
wrapper" coverage collection. 
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by the wrapper designer. In other words, checking assertions 
have to be defined by considering the IEEE P1500 wrapper 
as a black-box in general but also giving the verification 
engineer the ability to define their own assertions in the case 
internal implementation details are known. Moreover, to 
address the extensibility nature of IEEE P1500 standard, the 
eVC allows for error checking to be inherited in user-defined 
registers minimizing effort and maximizing reuse. 

We propose a list of error checks that fulfill the 
requirements posed in Section 1.  

 
WSO checking – The value of WSO signal is compared 
against the LS bit of the wrapper’s active register to verify 
this register's integrity. A DUT error is reported if the values 
do not match. The active register and its LS bit value are 
provided by the Reference Model. 
 
Wrapper normal mode checking – When wrapper is in 
normal (i.e. pass-through) mode (e.g. W_BYPASS is loaded), 
the values applied on parallel input signals of WBR cells (i.e. 
f_i[2:0] and c_o[1:0] in the example of Figure 1) are checked 

against values on their parallel output signals (i.e. c_i[2:0] 
and f_o[1:0], respectively). When the values do not match a 
DUT error is issued. 
 
Wrapper internal/external isolation mode checking – When 
wrapper is in internal (e.g. W_CORE_TEST_WS is loaded) 
or external (e.g. W_EX_TEST_S is loaded) isolation mode, 
values stored inside WBR cells are compared against values 
on their parallel output signals (i.e. c_i[2:0] and f_o[1:0), 
upon each P1500 event to verify isolation of the wrapper. If 
the values on the parallel output signals do not match the 
expected ones when the check is done, a DUT error is issued. 
Internal values of WBR cells are provided by the Reference 
Model. 
 
Update checking – Provided that WBR has an update stage, 
we check that its parallel output signals (i.e. c_i[2:0] and 
f_o[1:0]) get updated with its cells internal values when 
UPDATE_DR is issued and the instruction loaded permits so. 
If the values on the parallel output signals do not match the 
expected ones when the check is done, a DUT error is issued. 
Internal values of WBR cells are provided by the Reference 
Model again. This functionality is inherent on all register 
types, including user-defined registers, sub-typed from the 
basic register type the eVC provides. Should the verification 
engineer desire to modify or add to the inherited checking 
functionality upon UPDATE_DR events, they can do so by 
overriding the hook method provided. 
 
Shift checking – If WBR does not have an update stage, we 
check that its parallel output signals (i.e. c_i[2:0] and 
f_o[1:0]) get the values of its cells internal values when 
SHIFT_DR is issued. If the values on the parallel output 
signals do not match the expected ones when the check is 
done, a DUT error is issued. Internal values of WBR cells are 
provided by the Reference Model of course. Similarly to the 
previous check functionality, the verification engineer may 
modify or add to the hook method provided to implement 
their own checks upon SHIFT_DR. 

extend AG_0 WBR glbt_sect_register_s {
keep size == 5;

};

extend AG_0 WBR glbt_sect_register_cell_s {
-- Constraints for all cells of WBR
keep reset_value == 0;
keep value_known == FALSE;
keep has_update_stage == TRUE;

-- WBR[4..2]: Input cells
keep (cell_index >= 2) =>

can_capture_on == {W_EX_TEST_S};
keep (cell_index >= 2) =>

can_update_on == {W_CORE_TEST_WS};
keep (cell_index >= 2) =>

p_in == append("f_i[", dec(cell_index-2), "]");
keep (cell_index >= 2) =>

p_in_monitor_only == FALSE;
keep (cell_index >= 2) =>

p_out == append("c_i[", dec(cell_index-2), "]");

-- WBR[1..0]: Output cells
keep (cell_index < 2) =>

can_capture_on == {W_CORE_TEST_WS};
keep (cell_index < 2) =>

can_update_on == {W_EX_TEST_S};
keep (cell_index < 2) =>

p_in == append("c_o[", dec(cell_index),"]");
keep (cell_index >= 2) =>

p_in_monitor_only == TRUE;
keep (cell_index < 2) =>

p_out == append("f_o[", dec(cell_index),"]");
};

Figure 6. Reference Model configuration example

extend glbt_sect_reg_kind_t: [WDR];

extend AG_1 glbt_sect_ref_model_s {
wdr: WDR glbt_sect_register_s;

};

extend AG_1 WDR glbt_sect_register_s {
keep name == "Wrapper Defined Register";
keep size == 4;

};

extend AG_1 WDR glbt_sect_register_cell_s {
-- Constrain attributes appropriately here..

};

Figure 7. Definition of user-defined register (WDR) 
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6. JTAG TAP Support at the SoC Level 
The IEEE 1500 standard proposal defines the test 

infrastructure at the embedded core level. However, the 
proposal does not dictate the way to connect IEEE P1500 
wrapped cores at the SoC level. A typical way of connecting 
wrapped cores to primary terminals at the SoC level is to use 
an IEEE Std. 1149.1 (JTAG) Test Access Port (TAP) and 
Controller. Such an example is shown in Figure 8. The JTAG 
TAP Controller simply translates the JTAG serial interface to 
the IEEE P1500 serial interface. 

IEEE 1149.1 standard defines a State Diagram resulting 
in strict sequences of register accesses. Briefly, a data register 
access must start with a capture, followed by zero or more 
shifts, followed by an update. The same sequence holds for 
instruction register accesses. Hence, there are two possible 
P1500 event sequences only, coming out of the JTAG TAP 
Controller: 
− CAPTURE_DR, *SHIFT_DR, UPDATE_DR 
− CAPTURE_WIR, *SHIFT_WIR, UPDATE_WIR  

Let us refer to the first sequence as JTAG_SCAN_DR 
and to the second one as JTAG_SCAN_WIR. Now, we 
consider JTAG_SCAN_DR and JTAG_SCAN_WIR as basic 
JTAG events. One can give any JTAG event to the JTAG 
TAP Controller by driving its TMS input appropriately, as 
defined in the JTAG State Diagram. 

The eVC supports the usage of a JTAG TAP Controller, 
by just configuring the generation and driving layers to 
generate and drive JTAG events as eRM items. The change 
affects the two active units: Sequence Driver and BFM. 

In the Sequence Driver level, the basic eRM item type 
has been extended to include the two JTAG events. When a 
JTAG TAP controller is present, the item is constrained to be 
of JTAG event type only. Else, the item is constrained to be 
of P1500 event type only (the default case). Also, not all 
sequence sub-types defined in the sequence library are valid 
when JTAG TAP Controller is present. For example, a 
sequence sub-type that issues a CAPTURE_DR followed by 
a SHIFT_WIR is not valid in JTAG. Such sequence sub-
types just type a warning message at JTAG’s presence. On 
the other hand, any sequence sub-type that results in one or 
more repetitions of JTAG_SCAN_DR or JTAG_SCAN_WIR, 
is valid for JTAG. These sub-types result in generating JTAG 
events as eRM items. 

The BFM needs to implement a different interface 
protocol in the case of JTAG. Its main TCM executes a 
different thread in this case, implementing the JTAG State 
Diagram and driving the JTAG interface signals. To achieve 
this, the signal map of the ACTIVE agent also needs to be 
extended with the signal names of the JTAG interface. 

Units and structs in both Sequence Driver and BFM 
level are notified on the presence of JTAG TAP Controller 
by a global environment variable, which is constrained by the 
verification engineer at the configuration file. 

With the above mentioned approach, test level remains 
unchanged. The same tests can be run either with or without 
a JTAG TAP Controller. In the case of JTAG, if test uses a 
sequence that does not comply with the standard, that 
sequence will just type a warning message and the test will 
continue. 
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Concerning the passive elements of the eVC, these are 
still associated to IEEE P1500 wrappers by monitoring the 
IEEE P1500 serial interfaces, as Figure 8 depicts. This means 
that monitoring, checking and coverage collection is done on 
the IEEE P1500 serial interfaces, as if JTAG does not exist. 
One detail that the verification engineer can notice if JTAG is 
present concerns the P1500 event transition coverage item 
(derived with transitioning P1500 events coverage item, 
presented in Section 4). In this case, only transitions derived 
from JTAG_SCAN_DR and JTAG_SCAN_WIR can be seen. 
In the coverage results presented, every other transition will 
always be uncovered. The verification engineer is given the 
choice to either see these transitions or hide them from the 
coverage results as illegal. 

7. Conclusions 
In this paper, we presented a highly configurable, eVC 

architecture for thoroughly verifying P1500-compliant test 
infrastructures. The eVC addresses all challenges posed by 
the imminent IEEE 1500 standard having been designed with 
flexibility and extensibility in mind through all its levels and 
modules. Features include constrained-random vector 
generation, automated checking and coverage metrics 
definition, making the environment suitable for fully 
verifying infrastructures under virtually any configuration. 
Examples of e code have also been demonstrated in order to 
give a better insight of the eVC operation and configuration 
parameters. Finally, we illustrated how the eVC can support 
verification at the SoC level, for systems deploying the IEEE 
1149.1 (JTAG) for chip terminal access. 
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