
IP/SOC 2005 – December 7-8, 2005 1

Abstract :
In today’s fast growing Systems-on-Chip (SoC),
incomplete or ineffective DFT support due to poor
specification or loose design practices can quickly
become the critical path to making market windows
and delivering products within cost restrictions.

This paper will introduce a unified DFT
Verification Methodology, aimed at providing a
complete, methodical and fully automated path
from test specification to DFT closure. We will also
examine the benefits of this approach, looking at
how this methodology can help bridge the widening
gap between design and test.

I. INTRODUCTION
As modern IC transistor counts continue their
frenzied climb according to Moore's Law, test
infrastructures, the collection of logic dedicated to
testing the structural integrity of silicon, are also
fast growing in both area and complexity1. In a
nanometer design era where silicon debug already
takes up to 30% of project time and semiconductor
test cost typically accounts for 30-50% of total
fabrication cost, Design-For-Test, or DFT, is
assuming a critical role in product definition, design
and delivery.

Although DFT is a concept that has been around for
a long time, semiconductor companies are today
experiencing unprecedented pressure to provide
more complex DFT features in their designs. This
trend is largely attributed to the need for
controllability and observability within highly
integrated SoCs and is driven by the inevitabilities
of test economics.

I-A. WHY DFT FAILS
Design verification tools and methodologies have
made tremendous progress in the last few years,
directly benefiting design quality and shortening

1 Already reaching 20% of total gates in some SoCs

development cycles. However, DFT-specific
circuitry tends to be overlooked in most test plans.
There have been a series of contributing factors for
this oversight:

♦ No clean test intent is specified and
communicated to the design teams

♦ Lack of formal end-goal or associated
Quality of Result (QoR) for DFT

♦ Low prioritization compared to core
functionality

♦ Loose IP-based design methodologies
♦ A clear cultural gap between design and

test teams, including “over-the-wall”
communication breakdowns

These and many more reasons are today resulting in
typical DFT failures, manifested in a variety of
forms:

♦ Lack of strict protocol compliance and
loose interoperability

♦ Deviation from strict functional behavior
for test implementation (e.g. accuracy in
scan based delay-path test setup and
extraction)

♦ Poor testability coverage due to logical
errors in the implementation (e.g. inability
to access BIST controllers or error status
reporting registers)

♦ Decrease in test efficiency (time, test data
set size) due to non-coherent test
implementation

I-B. MOTIVATION
DFT failures due to loose design practices,
however, have been commonplace throughout the
history of modern IC design. What has changed
recently to accentuate the problem? The answer lies
in the inevitabilities of test economics. Cost of Test
(COT) in the nanometer era is breaking
semiconductor economics:

♦ COT does not scale. Although silicon fab
costs have been steadily decreasing to
accommodate industry needs, the capital
costs of testing wafers have remained flat
[1][2]

 IP/SOC 2005

Session: Industrial Verification and Methodology

A Unified DFT Verification Methodology

Stylianos Diamantidis, Iraklis Diamantidis and Thanasis Oikonomou,
Globetech Solutions
Thessaloniki Greece

IP/SOC 2005 – December 7-8, 2005 2

♦ Large Automated Test Equipment (ATE)
system cost is driving capital COT, due to
complexity of modern SoCs

♦ Exploding test time and test vector sets
combined with low yield are putting
imense pressure on COT

In order to deal with the inevitabilities of COT, the
industry is beginning to turn to massive
DFT implementations :

♦ Enable low-cost tester deployment by
partitioning test resources on-chip

♦ Design scalability into test schemes
♦ Increase controllability/observability for

silicon debug
♦ Implement on-chip instrumentation

These trends are leading to highly complex and
sophisticated DFT structures. However, associated
methodologies and design practices have not yet
caught on to this pressure:

♦ Although the industry is transitioning to
IP-based design to tackle complexity, test
is still very flat

♦ Developing ecosystem of IP vendors and
integrators is leading to more
heterogeneous and unpredictable test
infrastructures

♦ DFT insertion at different levels of
abstraction (RTL, gate, physical) is
increasing unpredictability and making it
difficult to define QoR requirements

♦ Test infrastructures are inherently
heterogeneous. IP-based design places a
new requirement to build coherent system
level test schemes from incoherent
components

DFT has hence become too important to treat as a
secondary design function and too complex to
tackle with traditional approaches. Instead, design
teams need to take special care to ensure the
behavioral functionality, strict compliance and
efficient operation of their test infrastructures. As
silicon test transitions from a design afterthought to
a critical manufacturability requirement, companies
need to rediscover “Design” in DFT. We start with
verification.

II. A UNIFIED DFT VERIFICATION
METHODOLOGY
In trying to design a complete DFT verification
environment [3] and associated methodology, one
needs to define the key objectives this approach is
trying to achieve:

♦ A well-defined entry point into the design
process that can be used as the foundation
for expressing test intent and expected end
QoR

♦ Mechanisms for verifying classes of DFT
components which will handle the stimuli

generation and checking aspects of testing
at different levels of abstraction

♦ Flows for deploying and executing
verification as well as measuring progress

♦ Tracking and analyzing results
♦ High-levels of automation and reuse
♦ Integration of Test Information Models in

the verification flow
♦ Methods for exchanging information with

post-silicon applications such as debug
and test

We have hence designed a robust, unified, DFT
Verification Methodology (DFT-VM). Keeping the
stated objectives in mind, we now proceed to
describe the methodology based upon three distinct
foundations: Planning, executing and automating.

II-A. PLANNING
The foundation for systematic DFT verification is a
well-defined set of goals, supported by a
methodology developed to provide integration-
oriented test methods into chip-level DFT, enabling
compatibility across different embedded cores and
incorporating high levels of reuse.

But how can one proactively plan for virtually
arbitrary DFT implementations that can be
produced by IP-based design, particularly when
different vendors follow completely different
approaches to DFT? Obviously test plans need to be
very modular and reusable, allowing for
hierarchical structures to be easily constructed to
describe the test infrastructure at hand.
Furthermore, test plans need to be polymorphic,
very much in the way that object-oriented
methodologies define classes of objects, making it
possible to use them in a variety of different forms
and shapes by specifying simple parameters.

In our solution, we specify a Plan Case Database, a
repository of plan templates, or cases. Such cases
contain policies for verifying DFT components
such as a JTAG TAP controller [4], without making
any assumptions for the non-standard or
implementation-specific aspects of the components.
DFT planning cases have the following
characteristics:

♦ They provide blueprints for verifying
classes of DFT components

♦ They specify QoR metrics that verifiers
can use to track progress against the plan

♦ They allow different views into the
verification plan data to be specified,
allowing for better analysis of results

Planning cases can be used to instrument the
verification of both rudimentary DFT components
as well as highly complex structures. This is

IP/SOC 2005 – December 7-8, 2005 3

achieved by dynamic planning, the process of
hierarchically piecing together a high level
verification plan from lower-level plans (see Figure
1). This modularity enables the quick and
repeatable composition of detailed verification
plans for arbitrary DFT infrastructures at the block,
core or system levels. Users can spend time
experimenting with these high level plans for
optimum results, setting the blueprint for a well
designed test infrastructure before a single design
decision has been made. The ability to reuse plans
at different levels of integration and abstraction is a
huge benefit to the predictability and verifiability of
the project.

Figure 1: Hierarchical DFT Verification Planning

Having compiled a plan case database, we now
have the necessary building blocks for expressing
high-level, complex, and, most importantly, highly
configurable verification plans, maximizing reuse
and leveraging on existing experience. Building a
dynamic chip-level DFT verification plan is now
broken down to instantiating and configuring
multiple DFT verification case objects.

II-B. EXECUTING
Once the critical task of planning has been properly
addressed, the verification environment needs a
scalable way of executing verification on the test
infrastructure. The most complete and reusable way
to achieve this is by deploying Verification IP
(VIP).

The concept of verification IP is fairly new in the
design community. Conceptually, VIP provides a
way of separating generic concepts of design
verification from application-specific ones. When
this separation is well designed, the direct benefits
are enhanced reuse and leverage on existing
experience. In the context of DFT, generic concepts
can include generating pseudo-random vectors and
driving them into a scan chain. Application-
specific concepts, for instance, could include using
this scan chain to configure a Memory Built-In Self
Test (M-BIST) controller [5].

Essentially, VIP is mechanism. It provides the
means and capabilities to perform operations and
observe DUT behavior; however, it does not
include policy. Policy, in this context, is defined as
the systematic flow of verifying a complex design,
starting with a detailed set of goals, adding a plan
of action and targeting a certain quality of result.
Hence, starting with a good policy, we can reach
our goals by deploying VIP as our mechanism.

We hence define a VIP Class Database. This
database includes VIP classes which map to types
of DFT components such as Test Access
Mechanisms (TAMs), scan chain elements, BIST
controllers, instruments, etc. Each VIP class
includes the tools needed by the verification
environment to effectively exercise its
corresponding type of DFT logic [6]:

♦ Constrained-random stimuli generators
♦ Automated, dynamic, checkers and

assertions
♦ Total coverage collectors

As with plan cases, VIP classes do not include
application-specific or implementation-dependent
aspects of the DFT component types they target.
Rather, they are rudimentary verification
environments which are highly reconfigurable and
reusable, making it easy to put together complex
environments in relatively small time and with
reduced effort. Furthermore, the VIP class database
becomes an experience repository for DFT, where
periodic updates ensure uniform design policies and
improved interoperability.

Finally, such a repository also helps improve
resource utilization and project management.
Expert verification engineers can maintain and
extend the repository with upgraded capabilities
and new functionality while logic designers, usually
not entirely familiar with the internal workings of
the VIP itself, can simply use the platforms based
on its capabilities. Conversely, using this
methodology, logic designers can ensure that new
features or design changes added directly into VIP
classes are made available instantly by regenerating
the environment. This enhanced automation of the
DFT-VM is discussed next.

II-C. AUTOMATING
Test Information Models (TIMs) are schemas used
to convey information about the test infrastructure
of an IC or embedded core as well as to describe
complete test programs that it can execute. TIMs
serve the purpose of delivering test vectors
generated using EDA tools to semiconductor testers
(ATEs). The IEEE 1450-1999 Standard Test
Interface Language (STIL) [7] is quickly becoming

System-level
DFT Plan

Standard Plan
(e.g. JTAG)

Embedded
Core Plan

Standard Plan
(e.g. IEEE1500)

Component
Plan (e.g.
MBIST)

Component
Plan (e.g.

LBIST)

IP/SOC 2005 – December 7-8, 2005 4

the de-facto standard. Recent extensions to TIM
standards (IEEE 1450.1-2005 [8], IEEE P1450.6
[9]) support additional structures in test models to
fully describe the DFT architecture itself, hence
enhancing the use of such models in semiconductor
design environments. These extensions are targeted
at enhanced DFT and DFM applications, where
ATEs can also be used for analyzing failure data
and providing feedback to EDA tools.

In our DFT Verification Methodology, TIMs play a
significant role. First, TIMs need to be considered a
part of the test infrastructure itself. In fact, the
recently published IEEE 1500-2005 Standard for
Embedded Core Test (SECT) [10] defines a TIM as
the only mandatory test infrastructure element for
claiming that an embedded core is compliant to the
standard. Based on the test intent described in the
TIM, designers can provide the necessary
functionality while maintaining flexibility in the
actual hardware implementation. Hence, TIMs need
to be verified alongside the DFT components that
implement them.

Secondly, TIMs include all the necessary topology,
architecture and implementation specific
information that must be available to the
verification environment. This way, a silicon IP
vendor can communicate test intent of a design core
to an integrator within specified completeness,
interoperability and confidentiality requirements.
This information, in the form of a TIM, can then be
used by the integrator for a variety of design
functions ranging from implementing certain DFT
components to shaping the IC-level test
infrastructure.

Figure 2: DFT-VM Automation Flow

In our approach, we are extending the applicability
of TIMs to design verification, claiming that TIMs
can provide an automation link between DFT

design and verification. The argument is supported
by a variety of technical and business conditions:

♦ TIMs can encompass test intent as
specified by test engineers without
committing to design decisions and hence
provide the grounds for an early test
specification

♦ TIMs bridge the gap between IP vendors
and integrators with respect to DFT
support in IP cores and hence can be used
to verify deliverables

♦ TIMs are models that can be used for early
test performance exploration

♦ Verification automation based on TIMs
can be used to maintain a link between the
post and pre silicon worlds, allowing
testbenches to be reused for debugging
silicon and optimizing manufacturing test

In order to better understand how TIMs can be used
to build DFT verification environments quickly and
effectively, let's consider the following example in
the context of an IEEE 1500-2005 compliant
embedded core.

III. TEST CASE
IEEE 1500-2005 (SECT) defines a scalable
architecture for independent, modular test
development and test application for embedded
design blocks. It also enables test of the external
logic surrounding these cores. Modular testing is
typically a requirement for embedded non-logic
blocks, such as memories, and for embedded, pre-
designed, non-mergeable IP cores. In addition, the
IEEE 1500 architecture can also be used to partition
large design blocks into smaller blocks of more
manageable size and to facilitate test reuse for
blocks that are reused from one system-on-chip
(SoC) design to the next.

A typical TIM is that of an IEEE 1450.6 Core Test
Language (CTL) description of the IEEE 1500 test
infrastructure, commonly referred to as a wrapper,
found in a SECT compliant embedded core (for
more information please refer to the IEEE 1500
standard). Such a model includes, amongst others,
information in a parse-able format about:

♦ Signals
The TIM publishes information about
signal names and sizes, as well as their
default state, so they can be initialized and
driven/sampled by an external agent.

♦ Scan Chains
This information refers to scan structures
that are part of DFT. That includes scan
chain sizes and cells' names, so other
information regarding the cells like
parallel inputs and/or output connecting
signal names can also be inferred.

 TIM

Plan
Cases

VIP
Classe

s

Execution
Platform

Verification
Environment

Test Suite

Management
Platform

Executable
Plan

Generate

Execute
& Track

IP/SOC 2005 – December 7-8, 2005 5

♦ Scan Cells
TIMs publish all information pertaining to
the scan chain cells, since IEEE 1500 cells
follow a standard naming convention that
fully describes their structure and function.

♦ Test modes
The TIM also includes information about
the various test modes that can be reached
by loading appropriate instructions. It
provides the instruction opcode that
triggers this mode, identifies the data
register to be used, and provides the
macros used to access it.

A TIM parser can parse all this information and
infer:

♦ IEEE 1500 control signals
o The Instruction Set Used
o Opcodes
o Data registers referenced

♦ The collection of test data registers
o Sizes
o Signal connections

♦ The cells contained in those registers
o Structure
o Signal connections
o Behavior during capture, update,

transfer operations
As an example, Figure 3 below illustrates an
example of a CTL description for an IEEE 1500
compliant embedded core wrapper. The description
provides information about the wrapper, including
the size and cell type of the instruction register
(WIR).

Having extracted these structures from the CTL
model, one can envision a process by which:

♦ The corresponding IEEE 1500 VIP class is
selected from the VIP database and
instantiated (see Figure 2, above)

♦ The number of cells specified in the WIR
structure and signals connecting to the
parallel input of those cells are used to
configure the VIP (see Figure 4, below)

Collections of TIMs can be grouped together
hierarchically to perform system level DFT
verification. This can be done by analyzing the
TIMs and deducing the respective topology of each
embedded core and its corresponding DFT
infrastructure in the SoC. With this information,
DFT-VM can be used to dynamically create test-
benches and tests optimized for a specific DFT
configuration.

IV. BENEFITS
The described verification methodology serves as a
solid foundation for true Design for Test. By
enforcing early verification documentation and
planning, it aligns the perspective of different
design teams with respect to DFT support and
enhances visibility. Automating environment
generation, it ensures that logic designers and test
engineers have a good auditing system for
debugging and regression analysis, while
propagation of new features and updates is
centralized through the use of plan and VIP
databases. Better project management and more
efficient resource utilization are also achieved by
providing clear interfaces for logic designers and
verification engineers.

TIM co-verification introduces strong semantics
into the description and integration of test
infrastructures. DFT designed by separate teams or
IP vendors can be merged into the IC-level reliably,
while maintaining a link with manufacturing test
deliverables. Architectural changes to DFT can
quickly propagate to the design environment
through fast regeneration and automatic plan
updates. Vendor qualification for DFT becomes
possible by enforcing TIM deliverables and being

// CTL for IEEE 1500 enabled embedded
 core wrapper
...
ScanChain wir_chain{
 ScanLength 4;
 ScanCells wcell[0..3];
}
...
 ...
 Internal{
 'wir_fi[0..3]{ DataType Functional
 TestData;
 IsConnected In {
 StateElement Scan 'wcell[0..3]';
 ..
 }
 }
 ...
 }
 ...
}

// 'e' language configuration for an
 IEEE 1500 VIP module

extend WIR glbt_sect_ref_model_register
{
 keep size == 4;
};

extend WIR
glbt_sect_ref_mode_register_cell
{
 keep cfi == append(“wir_fi”, “[“,
 cell_index, “]”);
};

Figure 3: IEEE 1450.6-CTL DFT Structure Example

Figure 4: Environment generation based on a TIM

IP/SOC 2005 – December 7-8, 2005 6

able to quickly and reliably validate vendor claims
for testability and interoperability. Finally,
advanced DFM applications can also be supported
through early collaboration with the fabrication and
tester providers.

Enhanced design engineering, automation and reuse
lead to increased predictability, better productivity
and higher overall quality.

IV-A. FUTURE WORK
Having successfully applied DFT-VM to functional
verification, we are envisioning several other areas
where the methodology can scale.

♦ Post-silicon test and validation
Having created a completely DFT aware
verification environment with QoR
measurements and associated test sets,
post-silicon validation of DFT becomes a
natural step in the methodology.
Validating DFT in silicon in a systematic
and predictable manner can help save test
time and improve reliability in
manufacturing test.

♦ DFM applications
We are also planning to explore some
interesting DFM applications such as
importing TIM-based test results from
silicon test back to verification to gain
better understanding of the functionality
perspective of common failures and to
facilitate analysis and debug.

V. CONCLUSIONS
We have identified the need to systematically verify
DFT as part of the total system verification process,
in order to increase the quality of the design and by
virtue, the end product. The need becomes more
apparent in the context of IP-based design of SoCs,
where multiple embedded cores from different
providers introduce heterogeneity and variation of
DFT quality.

We have hence proposed a unified methodology for
DFT verification, using Test Information Models to
dynamically identify, instantiate and configure
executable verification plans and environments.
Hence we provide a fast and reliable way to
building automated test-benches capable of
verifying DFT designs from simple components to
complete test infrastructures. Our approach enables
true design for test based on measurable quality of
result, and enhances productivity, reliability and
reusability.

Finally we have demonstrated how our
methodology results in a verification infrastructure
that can be reused during silicon debug and test

vector design for several advanced applications,
forming the basis for future work.

VI. REFERENCES
[1] International Technology Roadmap for
Semiconductors, 2003 Edition, “Test & Test
Equipment"
[2] International Technology Roadmap for
Semiconductors, 2004 Update, "Test & Test
Equipment"
[3] K. Melocco, H. Arora, P. Setlak,
G.Kunselman, and S. Mardhani, "A Comprehensive
Approach to Assessing and Analyzing 1149.1 Test
Logic," in the proceedings of International Test
Conference, Charlotte, NC, USA, Sep 30 - Oct 2,
2003, pp. 358-367.
[4] IEEE Computer Society, "IEEE Standard
Test Access Port and Boundary-Scan Architecture -
IEEE Std. 1149.1-2001", New York: IEEE, 2001.
[5] D. Appello, F. Corno, M. Giovinetto, M.
Rebaudengo, and M. Sonza Reorda, "A P1500
compliant BIST-based approach to embedded RAM
Diagnosis," in the proceedings of 10th Asian Test
Symposium, Kyoto, Japan, Nov. 19-21, 2001, pp.
97-102.
[6] I. Diamantidis, T. Oikonomou, and S.
Diamantidis. "Towards an IEEE P1500 Verification
Infrastructure: A Comprehensive Approach",
presented at the 3rd IEEE International Workshop
on Infrastructure IP (IIP), Santa Clara, CA, USA,
May 4-5, 2005
[7] Test Technology Standards Committee of
the IEEE Computer Society, "IEEE Standard Test
Interface Language (STIL) for Digital Test Vector
Data - IEEE Std. 1450-1999", New York: IEEE
1999.
[8] P1450.1 Working Group of the Test
Technology Standards Committee, "Draft Standard
for Standard Test Interface Language (STIL) for
Digital Test Vector Data - Extensions to STIL for
Semiconductor Design Environments - P1450.1",
New York: IEEE 2005.
[9] CTL Working Group of the Test
Technology Standards Committee, "Draft Standard
for Standard Test Interface Language (STIL) for
Digital Test Vector Data - Core Test Language
(CTL) - P1450.6/D1.6", New York: IEEE 2005.
[10] IEEE Computer Society, "IEEE Standard
Testability Method for Embedded Core-based
Integrated Circuits - IEEE Std. 1500-2005", New
York: IEEE 2005.

	DFT-VM IPSOC2005-pdf

