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Abstract : 
In today’s fast growing Systems-on-Chip (SoC), 
incomplete or ineffective DFT support due to poor 
specification or loose design practices can quickly 
become the critical path to making market windows 
and delivering products within cost restrictions. 
 
This paper will introduce a unified DFT 
Verification Methodology, aimed at providing a 
complete, methodical and fully automated path 
from test specification to DFT closure. We will also 
examine the benefits of this approach, looking at 
how this methodology can help bridge the widening 
gap between design and test. 
 
I. INTRODUCTION 
As modern IC transistor counts continue their 
frenzied climb according to Moore's Law, test 
infrastructures, the collection of logic dedicated to 
testing the structural integrity of silicon, are also 
fast growing in both area and complexity1. In a 
nanometer design era where silicon debug already 
takes up to 30% of project time and semiconductor 
test cost typically accounts for 30-50% of total 
fabrication cost, Design-For-Test, or DFT, is 
assuming a critical role in product definition, design 
and delivery.  
 
Although DFT is a concept that has been around for 
a long time, semiconductor companies are today 
experiencing unprecedented pressure to provide 
more complex DFT features in their designs. This 
trend is largely attributed to the need for 
controllability and observability within highly 
integrated SoCs and is driven by the inevitabilities 
of test economics. 
 
I-A. WHY DFT FAILS 
Design verification tools and methodologies have 
made tremendous progress in the last few years, 
directly benefiting design quality and shortening 

                                                        
1 Already reaching 20% of total gates in some SoCs 

development cycles. However, DFT-specific 
circuitry tends to be overlooked in most test plans. 
There have been a series of contributing factors for 
this oversight: 

♦ No clean test intent is specified and 
communicated to the design teams 

♦ Lack of formal end-goal or associated 
Quality of Result (QoR) for DFT 

♦ Low prioritization compared to core 
functionality 

♦ Loose IP-based design methodologies 
♦ A clear cultural gap between design and 

test teams, including “over-the-wall” 
communication breakdowns 

These and many more reasons are today resulting in 
typical DFT failures, manifested in a variety of 
forms: 

♦ Lack of strict protocol compliance and 
loose interoperability 

♦ Deviation from strict functional behavior 
for test implementation (e.g. accuracy in 
scan based delay-path test setup and 
extraction) 

♦ Poor testability coverage due to logical 
errors in the implementation (e.g. inability 
to access BIST controllers or error status 
reporting registers) 

♦ Decrease in test efficiency (time, test data 
set size) due to non-coherent test 
implementation 

 
I-B. MOTIVATION 
DFT failures due to loose design practices, 
however, have been commonplace throughout the 
history of modern IC design. What has changed 
recently to accentuate the problem? The answer lies 
in the inevitabilities of test economics. Cost of Test 
(COT) in the nanometer era is breaking 
semiconductor economics: 

♦ COT does not scale. Although silicon fab 
costs have been steadily decreasing to 
accommodate industry needs, the capital 
costs of testing wafers have remained flat 
[1][2] 
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♦ Large Automated Test Equipment (ATE) 
system cost is driving capital COT, due to 
complexity of modern SoCs 

♦ Exploding test time and test vector sets 
combined with low yield are putting 
imense pressure on COT 

In order to deal with the inevitabilities of COT, the 
industry is beginning to turn to massive 
DFT implementations : 

♦ Enable low-cost tester deployment by 
partitioning test resources on-chip 

♦ Design scalability into test schemes 
♦ Increase controllability/observability for 

silicon debug 
♦ Implement on-chip instrumentation 

These trends are leading to highly complex and 
sophisticated DFT structures. However, associated 
methodologies and design practices have not yet 
caught on to this pressure: 

♦ Although the industry is transitioning to 
IP-based design to tackle complexity, test 
is still very flat 

♦ Developing ecosystem of IP vendors and 
integrators is leading to more 
heterogeneous and unpredictable test 
infrastructures 

♦ DFT insertion at different levels of 
abstraction (RTL, gate, physical) is 
increasing unpredictability and making it 
difficult to define QoR requirements 

♦ Test infrastructures are inherently 
heterogeneous. IP-based design places a 
new requirement to build coherent system 
level test schemes from incoherent 
components 

DFT has hence become too important to treat as a 
secondary design function and too complex to 
tackle with traditional approaches. Instead, design 
teams need to take special care to ensure the 
behavioral functionality, strict compliance and 
efficient operation of their test infrastructures. As 
silicon test transitions from a design afterthought to 
a critical manufacturability requirement, companies 
need to rediscover “Design” in DFT. We start with 
verification. 
 
II. A UNIFIED DFT VERIFICATION 
METHODOLOGY 
In trying to design a complete DFT verification 
environment [3] and associated methodology, one 
needs to define the key objectives this approach is 
trying to achieve: 

♦ A well-defined entry point into the design 
process that can be used as the foundation 
for expressing test intent and expected end 
QoR 

♦ Mechanisms for verifying classes of DFT 
components which will handle the stimuli 

generation and checking aspects of testing 
at different levels of abstraction 

♦ Flows for deploying and executing 
verification as well as measuring progress 

♦ Tracking and analyzing results 
♦ High-levels of automation and reuse 
♦ Integration of Test Information Models in 

the verification flow 
♦ Methods for exchanging information with 

post-silicon applications such as debug 
and test 

 
We have hence designed a robust, unified, DFT 
Verification Methodology (DFT-VM). Keeping the 
stated objectives in mind, we now proceed to 
describe the methodology based upon three distinct 
foundations: Planning, executing and automating. 
 
II-A. PLANNING 
The foundation for systematic DFT verification is a 
well-defined set of goals, supported by a 
methodology developed to provide integration-
oriented test methods into chip-level DFT, enabling 
compatibility across different embedded cores and 
incorporating high levels of reuse. 
 
But how can one proactively plan for virtually 
arbitrary DFT implementations that can be 
produced by IP-based design, particularly when 
different vendors follow completely different 
approaches to DFT? Obviously test plans need to be 
very modular and reusable, allowing for 
hierarchical structures to be easily constructed to 
describe the test infrastructure at hand. 
Furthermore, test plans need to be polymorphic, 
very much in the way that object-oriented 
methodologies define classes of objects, making it 
possible to use them in a variety of different forms 
and shapes by specifying simple parameters. 
 
In our solution, we specify a Plan Case Database, a 
repository of plan templates, or cases. Such cases 
contain policies for verifying DFT components 
such as a JTAG TAP controller [4], without making 
any assumptions for the non-standard or 
implementation-specific aspects of the components. 
DFT planning cases have the following 
characteristics: 

♦ They provide blueprints for verifying 
classes of DFT components 

♦ They specify QoR metrics that verifiers 
can use to track progress against the plan 

♦ They allow different views into the 
verification plan data to be specified, 
allowing for better analysis of results 

Planning cases can be used to instrument the 
verification of both rudimentary DFT components 
as well as highly complex structures. This is 
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achieved by dynamic planning, the process of 
hierarchically piecing together a high level 
verification plan from lower-level plans (see Figure 
1). This modularity enables the quick and 
repeatable composition of detailed verification 
plans for arbitrary DFT infrastructures at the block, 
core or system levels. Users can spend time 
experimenting with these high level plans for 
optimum results, setting the blueprint for a well 
designed test infrastructure before a single design 
decision has been made. The ability to reuse plans 
at different levels of integration and abstraction is a 
huge benefit to the predictability and verifiability of 
the project. 

 
Figure 1: Hierarchical DFT Verification Planning 

 
Having compiled a plan case database, we now 
have the necessary building blocks for expressing 
high-level, complex, and, most importantly, highly 
configurable verification plans, maximizing reuse 
and leveraging on existing experience. Building a 
dynamic chip-level DFT verification plan is now 
broken down to instantiating and configuring 
multiple DFT verification case objects. 
 
II-B. EXECUTING 
Once the critical task of planning has been properly 
addressed, the verification environment needs a 
scalable way of executing verification on the test 
infrastructure. The most complete and reusable way 
to achieve this is by deploying Verification IP 
(VIP). 
 
The concept of verification IP is fairly new in the 
design community. Conceptually, VIP provides a 
way of separating generic concepts of design 
verification from application-specific ones. When 
this separation is well designed, the direct benefits 
are enhanced reuse and leverage on existing 
experience. In the context of DFT, generic concepts 
can include generating pseudo-random vectors and 
driving them into a scan chain.  Application-
specific concepts, for instance, could include using 
this scan chain to configure a Memory Built-In Self 
Test (M-BIST) controller [5]. 

 
Essentially, VIP is mechanism. It provides the 
means and capabilities to perform operations and 
observe DUT behavior; however, it does not 
include policy. Policy, in this context, is defined as 
the systematic flow of verifying a complex design, 
starting with a detailed set of goals, adding a plan 
of action and targeting a certain quality of result. 
Hence, starting with a good policy, we can reach 
our goals by deploying VIP as our mechanism. 
 
We hence define a VIP Class Database. This 
database includes VIP classes which map to types 
of DFT components such as Test Access 
Mechanisms (TAMs), scan chain elements, BIST 
controllers, instruments, etc. Each VIP class 
includes the tools needed by the verification 
environment to effectively exercise its 
corresponding type of DFT logic [6]: 

♦ Constrained-random stimuli generators 
♦ Automated, dynamic, checkers and 

assertions 
♦ Total coverage collectors 

As with plan cases, VIP classes do not include 
application-specific or implementation-dependent 
aspects of the DFT component types they target. 
Rather, they are rudimentary verification 
environments which are highly reconfigurable and 
reusable, making it easy to put together complex 
environments in relatively small time and with 
reduced effort. Furthermore, the VIP class database 
becomes an experience repository for DFT, where 
periodic updates ensure uniform design policies and 
improved interoperability. 
 
Finally, such a repository also helps improve 
resource utilization and project management. 
Expert verification engineers can maintain and 
extend the repository with upgraded capabilities 
and new functionality while logic designers, usually 
not entirely familiar with the internal workings of 
the VIP itself, can simply use the platforms based 
on its capabilities. Conversely, using this 
methodology, logic designers can ensure that new 
features or design changes added directly into VIP 
classes are made available instantly by regenerating 
the environment. This enhanced automation of the 
DFT-VM is discussed next. 
 
II-C. AUTOMATING 
Test Information Models (TIMs) are schemas used 
to convey information about the test infrastructure 
of an IC or embedded core as well as to describe 
complete test programs that it can execute. TIMs 
serve the purpose of delivering test vectors 
generated using EDA tools to semiconductor testers 
(ATEs). The IEEE 1450-1999 Standard Test 
Interface Language (STIL) [7] is quickly becoming 

System-level 
DFT Plan 

Standard Plan 
(e.g. JTAG)  

Embedded 
Core Plan  

Standard Plan 
(e.g. IEEE1500)  

Component 
Plan (e.g. 
MBIST)  

Component 
Plan (e.g. 

LBIST)  



IP/SOC 2005 – December 7-8, 2005 4 

the de-facto standard. Recent extensions to TIM 
standards (IEEE 1450.1-2005 [8], IEEE P1450.6 
[9]) support additional structures in test models to 
fully describe the DFT architecture itself, hence 
enhancing the use of such models in semiconductor 
design environments. These extensions are targeted 
at enhanced DFT and DFM applications, where 
ATEs can also be used for analyzing failure data 
and providing feedback to EDA tools. 
 
In our DFT Verification Methodology, TIMs play a 
significant role. First, TIMs need to be considered a 
part of the test infrastructure itself. In fact, the 
recently published IEEE 1500-2005 Standard for 
Embedded Core Test (SECT) [10] defines a TIM as 
the only mandatory test infrastructure element for 
claiming that an embedded core is compliant to the 
standard. Based on the test intent described in the 
TIM, designers can provide the necessary 
functionality while maintaining flexibility in the 
actual hardware implementation. Hence, TIMs need 
to be verified alongside the DFT components that 
implement them. 
 
Secondly, TIMs include all the necessary topology, 
architecture and implementation specific 
information that must be available to the 
verification environment. This way, a silicon IP 
vendor can communicate test intent of a design core 
to an integrator within specified completeness, 
interoperability and confidentiality requirements. 
This information, in the form of a TIM, can then be 
used by the integrator for a variety of design 
functions ranging from implementing certain DFT 
components to shaping the IC-level test 
infrastructure. 
 

 
Figure 2: DFT-VM Automation Flow 

In our approach, we are extending the applicability 
of TIMs to design verification, claiming that TIMs 
can provide an automation link between DFT 

design and verification. The argument is supported 
by a variety of technical and business conditions: 

♦ TIMs can encompass test intent as 
specified by test engineers without 
committing to design decisions and hence 
provide the grounds for an early test 
specification 

♦ TIMs bridge the gap between IP vendors 
and integrators with respect to DFT 
support  in IP cores and hence can be used 
to verify deliverables 

♦ TIMs are models that can be used for early 
test performance exploration 

♦ Verification automation based on TIMs 
can be used to maintain a link between the 
post and pre silicon worlds, allowing 
testbenches to be reused for debugging 
silicon and optimizing manufacturing test 

In order to better understand how TIMs can be used 
to build DFT verification environments quickly and 
effectively, let's consider the following example in 
the context of an IEEE 1500-2005 compliant 
embedded core. 
 
III. TEST CASE 
IEEE 1500-2005 (SECT) defines a scalable 
architecture for independent, modular test 
development and test application for embedded 
design blocks. It also enables test of the external 
logic surrounding these cores. Modular testing is 
typically a requirement for embedded non-logic 
blocks, such as memories, and for embedded, pre-
designed, non-mergeable IP cores. In addition, the 
IEEE 1500 architecture can also be used to partition 
large design blocks into smaller blocks of more 
manageable size and to facilitate test reuse for 
blocks that are reused from one system-on-chip 
(SoC) design to the next. 
 
A typical TIM is that of an IEEE 1450.6 Core Test 
Language (CTL) description of the IEEE 1500 test 
infrastructure, commonly referred to as a wrapper, 
found in a SECT compliant embedded core (for 
more information please refer to the IEEE 1500 
standard). Such a model includes, amongst others, 
information in a parse-able format about: 

♦ Signals 
The TIM publishes information about 
signal names and sizes, as well as their 
default state, so they can be initialized and 
driven/sampled by an external agent. 

♦ Scan Chains 
This information refers to scan structures 
that are part of DFT. That includes scan 
chain sizes and cells' names, so other 
information regarding the cells like 
parallel inputs and/or output connecting 
signal names can also be inferred. 

  TIM 
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♦ Scan Cells 
TIMs publish all information pertaining to 
the scan chain cells, since IEEE 1500 cells 
follow a standard naming convention that 
fully describes their structure and function. 

♦ Test modes 
The TIM also includes information about 
the various test modes that can be reached 
by loading appropriate instructions. It 
provides the instruction opcode that 
triggers this mode, identifies the data 
register to be used, and provides the 
macros used to access it. 

A TIM parser can parse all this information and 
infer: 

♦ IEEE 1500 control signals 
o The Instruction Set Used 
o Opcodes 
o Data registers referenced 

♦ The collection of test data registers 
o Sizes 
o Signal connections 

♦ The cells contained in those registers 
o Structure 
o Signal connections 
o Behavior during capture,  update, 

transfer operations 
As an example, Figure 3 below illustrates an 
example of a CTL description for an IEEE 1500 
compliant embedded core wrapper. The description 
provides information about the wrapper, including 
the size and cell type of the instruction register 
(WIR).  
 

 
Having extracted these structures from the CTL 
model, one can envision a process by which: 

♦ The corresponding IEEE 1500 VIP class is 
selected from the VIP database and 
instantiated (see Figure 2, above) 

♦ The number of cells specified in the WIR 
structure and signals connecting to the 
parallel input of those cells are used to 
configure the VIP (see Figure 4, below) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Collections of TIMs can be grouped together 
hierarchically to perform system level DFT 
verification. This can be done by analyzing the 
TIMs and deducing the respective topology of each 
embedded core and its corresponding DFT 
infrastructure in the SoC. With this information, 
DFT-VM can be used to dynamically create test-
benches and tests optimized for a specific DFT 
configuration. 
 
IV. BENEFITS 
The described verification methodology serves as a 
solid foundation for true Design for Test. By 
enforcing early verification documentation and 
planning, it aligns the perspective of different 
design teams with respect to DFT support and 
enhances visibility. Automating environment 
generation, it ensures that logic designers and test 
engineers have a good auditing system for 
debugging and regression analysis, while 
propagation of new features and updates is 
centralized through the use of plan and VIP 
databases. Better project management and more 
efficient resource utilization are also achieved by 
providing clear interfaces for logic designers and 
verification engineers. 
 
TIM co-verification introduces strong semantics 
into the description and integration of test 
infrastructures. DFT designed by separate teams or 
IP vendors can be merged into the IC-level reliably, 
while maintaining a link with manufacturing test 
deliverables. Architectural changes to DFT can 
quickly propagate to the design environment 
through fast regeneration and automatic plan 
updates. Vendor qualification for DFT becomes 
possible by enforcing TIM deliverables and being 

// CTL for IEEE 1500 enabled embedded 
   core wrapper 
... 
ScanChain wir_chain{ 
  ScanLength 4; 
  ScanCells wcell[0..3]; 
} 
... 
  ... 
  Internal{ 
    'wir_fi[0..3]{ DataType Functional 
                   TestData; 
      IsConnected In { 
        StateElement Scan 'wcell[0..3]'; 
        .. 
      } 
    } 
    ... 
  } 
  ... 
} 

// 'e' language configuration for an  
   IEEE 1500 VIP module 
 
extend WIR glbt_sect_ref_model_register 
{ 
  keep size == 4; 
}; 
 
extend WIR 
glbt_sect_ref_mode_register_cell 
{ 
  keep cfi == append(“wir_fi”, “[“, 
       cell_index, “]”); 
}; 

Figure 3: IEEE 1450.6-CTL DFT Structure Example 

Figure 4: Environment generation based on a TIM 
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able to quickly and reliably validate vendor claims 
for testability and interoperability. Finally, 
advanced DFM applications can also be supported 
through early collaboration with the fabrication and 
tester providers. 
 
Enhanced design engineering, automation and reuse 
lead to increased predictability, better productivity 
and higher overall quality.  
 
IV-A. FUTURE WORK 
Having successfully applied DFT-VM to functional 
verification, we are envisioning several other areas 
where the methodology can scale. 

♦ Post-silicon test and validation 
Having created a completely DFT aware 
verification environment with QoR 
measurements and associated test sets, 
post-silicon validation of DFT becomes a 
natural step in the methodology. 
Validating DFT in silicon in a systematic 
and predictable manner can help save test 
time and improve reliability in 
manufacturing test. 

♦ DFM applications 
We are also planning to explore some 
interesting DFM applications such as 
importing TIM-based test results from 
silicon test back to verification to gain 
better understanding of the functionality 
perspective of common failures and to 
facilitate analysis and debug. 

 
V. CONCLUSIONS 
We have identified the need to systematically verify 
DFT as part of the total system verification process, 
in order to increase the quality of the design and by 
virtue, the end product. The need becomes more 
apparent in the context of IP-based design of SoCs, 
where multiple embedded cores from different 
providers introduce heterogeneity and variation of 
DFT quality. 
 
We have hence proposed a unified methodology for 
DFT verification, using Test Information Models to 
dynamically identify, instantiate and configure 
executable verification plans and environments. 
Hence we provide a fast and reliable way to 
building automated test-benches capable of 
verifying DFT designs from simple components to 
complete test infrastructures. Our approach enables 
true design for test based on measurable quality of 
result, and enhances productivity, reliability and 
reusability. 
 
Finally we have demonstrated how our 
methodology results in a verification infrastructure 
that can be reused during silicon debug and test 

vector design for several advanced applications, 
forming the basis for future work. 
 
VI. REFERENCES 
[1] International Technology Roadmap for 
Semiconductors, 2003 Edition, “Test & Test 
Equipment" 
[2] International Technology Roadmap for 
Semiconductors, 2004 Update, "Test & Test 
Equipment"  
[3]  K. Melocco, H. Arora, P. Setlak, 
G.Kunselman, and S. Mardhani, "A Comprehensive 
Approach to Assessing and Analyzing 1149.1 Test 
Logic," in the proceedings of International Test 
Conference, Charlotte, NC, USA, Sep 30 - Oct 2, 
2003, pp. 358-367.  
[4] IEEE Computer Society, "IEEE Standard 
Test Access Port and Boundary-Scan Architecture -
IEEE Std. 1149.1-2001", New York: IEEE, 2001. 
[5]  D. Appello, F. Corno, M. Giovinetto, M. 
Rebaudengo, and M. Sonza Reorda, "A P1500 
compliant BIST-based approach to embedded RAM 
Diagnosis," in the proceedings of 10th Asian Test 
Symposium, Kyoto, Japan, Nov. 19-21, 2001, pp. 
97-102. 
[6] I. Diamantidis, T. Oikonomou, and S. 
Diamantidis. "Towards an IEEE P1500 Verification 
Infrastructure: A Comprehensive Approach", 
presented at the 3rd IEEE International Workshop 
on Infrastructure IP (IIP), Santa Clara, CA, USA, 
May 4-5, 2005 
[7] Test Technology Standards Committee of 
the IEEE Computer Society, "IEEE Standard Test 
Interface Language (STIL) for Digital Test Vector 
Data - IEEE Std. 1450-1999", New York: IEEE 
1999. 
[8] P1450.1 Working Group of the Test 
Technology Standards Committee, "Draft Standard 
for Standard Test Interface Language (STIL) for 
Digital Test Vector Data - Extensions to STIL for 
Semiconductor Design Environments - P1450.1", 
New York: IEEE 2005. 
[9] CTL Working Group of the Test 
Technology Standards Committee, "Draft Standard 
for Standard Test Interface Language (STIL) for 
Digital Test Vector Data - Core Test Language 
(CTL) - P1450.6/D1.6", New York: IEEE 2005. 
[10] IEEE Computer Society, "IEEE Standard 
Testability Method for Embedded Core-based 
Integrated Circuits - IEEE Std. 1500-2005", New 
York: IEEE 2005. 


	DFT-VM IPSOC2005-pdf

